China best Outdoor Heavy Duty Camera Pantilt Servo Radar Pan Tilt Motor vacuum pump

Product Description

Outdoor Heavy Duty Camera Pantilt Servo Radar Pan Tilt Motor

Product Description

 

Features
1. Max Load:35kg/50kg
2. Support RS485(or RS422 or RS232 optional)
3. Support kinds of Lens preset with self-adaptive function
4. High resetting accuracy, up to ±0.1º
5. Adopt die-cast aluminum alloy material
6. Adopt high-precision, high-strength steel worm-gear driven, self-locked when power is off
7. Pan:0~360º continuous
8. Protection Class: IP66
9. Support OSD Menu (optional)
10. Support returning data of pan tilt position, focal length, focus etc
 

Pantilt Technology Data

Model SP50
Pan/tilt Speed Pan:0.01º~12º/s,Tilt:0.01º~8º/s
Rotation Angle Pan:0°~360º continuous,Tilt:+45º~-45º
Number of Presets 200
Preset Positioning Accuracy ±0.1º
Function Pan tilt position data, focal length etc.
Auxiliary Switch 2 groups
Lens Preset Support,with self-adaptive function
Lens control speed Speed of zoom/focus can be adjustable continuously
Auto Cruising 8 tracks( each with 10 presets)
Homing It can be set up within the scope of 1~60 min
Auto Scan 1 path
Protocol Pelco-D/P
Baud Rate 2400/4800/9600/19200bps
Interface RS485 or RS422
Input Voltage AC24V±20%,50/60HZ;DC28V±20%
Power Consumption ≤80W
Operation Temperature Temp:-25ºC~+65ºC,Humidity:90%±3% RH; -40ºC~+65ºC(without condensation)
Storage Temperature -40ºC~+70ºC
Max Load 50KG
Load Mode Top-mounted/side-mounted
Driven Worm-gear driven
Protection Class IP66
Weight 23KG
Dimensions 350mm*206mm*380mm(L*W*H)

SP50 Pantilt Dimension

Packaging & Shipping

FAQ

  FAQ:
1. Q: Is your company manufacturer? 
         Yes, Sheenrun is the thermal camera and laser camera manufacturer since year 2004.

2. Q: Can you supply OEM service?
         Yes, Sheenrun can do OEM products as customer’s requirement.

3. Q: What is the product’s lead time? 
        It is confirmed by the order quantity.

4. Q: What is the warranty?
         It is generally 1 year warranty, extend warranty is available.

5. Q: How will the product be shipped?
         For sample order, it will be shipped by DHL, FEDEX, UPS or TNT.
         For bulk order, we can arrange the shipment as customer requirement.

6. Q: How about your after sale service?
         Any problem about our product, you can contact with us at any time. Our team will supply technical service for you.
 

Company Profile

Sheenrun company, which was founded in year 2004, is 1 of the largest manufaturer of long range thermal imaging camera and laser night vision camera, as well as a relying Academician serveillance Engineering Technology Research Center in China.

Sheenrun adheres to independent innovation, which developed the world’s first laser night vision camera,  and the continuous zoom infrared thermal imaging technology has reached the international advanced standard level.  The laser night vision and infrared thermal imaging products have been widely used in nation defense, safe cities, railways, highways, forest fire, oil and other fields, achieved all-weather surveillance, provided technical support for the maintenance of national security and socal stability.

More Products, pls click the picture for detail information.

                               Thermal Camera                                             HD Laser Night Vision Camera                             Dual Sensor Thermal Camera /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Technology: Pan / Tilt / Zoom
Style: Pan/Tilt
Certification: CE, FCC, CCC, ISO9001: 2000
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

How does the cost of servo motors vary based on their specifications and features?

The cost of servo motors can vary significantly based on their specifications and features. Several factors influence the price of servo motors, and understanding these factors can help in selecting the most cost-effective option for a specific application. Let’s explore in detail how the cost of servo motors can vary:

1. Power Rating:

One of the primary factors affecting the cost of a servo motor is its power rating, which is typically measured in watts or kilowatts. Higher power-rated servo motors generally cost more than lower-rated ones due to the increased materials and manufacturing required to handle higher power levels. The power rating of a servo motor is determined by the torque and speed requirements of the application. Higher torque and speed capabilities often correspond to higher costs.

2. Torque and Speed:

The torque and speed capabilities of a servo motor directly impact its cost. Servo motors designed for high torque and high-speed applications tend to be more expensive due to the need for robust construction, specialized materials, and advanced control electronics. Motors with higher torque and speed ratings often require more powerful magnets, larger windings, and higher precision components, contributing to the increase in cost.

3. Frame Size:

The physical size or frame size of a servo motor also plays a role in determining its cost. Servo motors come in various frame sizes, such as NEMA (National Electrical Manufacturers Association) standard sizes in North America. Larger frame sizes generally command higher prices due to the increased materials and manufacturing complexity required to build larger motors. Smaller frame sizes, on the other hand, may be more cost-effective but may have limitations in terms of torque and speed capabilities.

4. Feedback Mechanism:

The feedback mechanism used in a servo motor affects its cost. Servo motors typically employ encoders or resolvers to provide feedback on the rotor position. Higher-resolution encoders or more advanced feedback technologies can increase the cost of the motor. For example, servo motors with absolute encoders, which provide position information even after power loss, tend to be more expensive than those with incremental encoders.

5. Control Features and Technology:

The control features and technology incorporated into a servo motor can influence its cost. Advanced servo motors may offer features such as built-in controllers, fieldbus communication interfaces, advanced motion control algorithms, or integrated safety functions. These additional features contribute to the cost of the motor but can provide added value and convenience in certain applications. Standard servo motors with basic control functionality may be more cost-effective for simpler applications.

6. Brand and Reputation:

The brand and reputation of the servo motor manufacturer can impact its cost. Established and reputable brands often command higher prices due to factors such as quality assurance, reliability, technical support, and extensive product warranties. While motors from less-known or generic brands may be more affordable, they may not offer the same level of performance, reliability, or long-term support.

7. Customization and Application-Specific Requirements:

If a servo motor needs to meet specific customization or application-specific requirements, such as specialized mounting options, environmental sealing, or compliance with industry standards, the cost may increase. Customization often involves additional engineering, design, and manufacturing efforts, which can lead to higher prices compared to off-the-shelf servo motors.

It’s important to note that the cost of a servo motor is not the sole indicator of its quality or suitability for a particular application. It is essential to carefully evaluate the motor’s specifications, features, and performance characteristics in relation to the application requirements to make an informed decision.

In summary, the cost of servo motors varies based on factors such as power rating, torque and speed capabilities, frame size, feedback mechanism, control features and technology, brand reputation, and customization requirements. By considering these factors and comparing different options, it is possible to select a servo motor that strikes the right balance between performance and cost-effectiveness for a specific application.

servo motor

How does the accuracy of a servo motor impact the precision of a system it operates in?

The accuracy of a servo motor has a significant impact on the precision of the system in which it operates. Here’s how the accuracy of a servo motor influences the precision of the system:

1. Positioning Control:

The accuracy of a servo motor directly affects the precision of positioning control in a system. A servo motor with high accuracy can accurately and consistently reach and maintain the desired position. This precision in positioning control is crucial in applications where precise movements, such as in robotics or manufacturing processes, are required. If the servo motor lacks accuracy, it may introduce position errors, leading to reduced precision in the system’s overall operation.

2. Repeatability:

Repeatability refers to the ability of a system to consistently achieve the same position or motion repeatedly. The accuracy of a servo motor plays a vital role in achieving high repeatability. A servo motor with high accuracy will consistently return to the same position when commanded to do so. This level of repeatability is essential in applications where consistent and precise movements are necessary, such as in assembly lines or pick-and-place operations. A lack of accuracy in the servo motor can result in variations in position from one cycle to another, reducing the overall precision of the system.

3. Error Compensation:

The accuracy of a servo motor is crucial for error compensation in a system. In many applications, external factors, such as variations in load or environmental conditions, can introduce errors in the system’s operation. An accurate servo motor can help compensate for these errors by precisely adjusting its position or motion based on feedback from sensors. This error compensation capability contributes to maintaining the precision of the system, as the servo motor can continuously adjust to minimize any deviations from the desired position or trajectory.

4. System Stability:

The accuracy of the servo motor also impacts the stability of the system. A servo motor with high accuracy can achieve stable movements and maintain control over the system’s dynamics. It can respond accurately to control signals, preventing overshoot, oscillations, or erratic behaviors that can degrade system precision. On the other hand, a servo motor with lower accuracy may introduce instability or erratic movements, compromising the overall precision of the system.

5. System Calibration and Calibration:

An accurate servo motor simplifies the calibration and fine-tuning process of a system. When a system requires calibration, an accurate servo motor provides a reliable reference point for adjustments. The precise and consistent movements of the servo motor make it easier to calibrate other components or subsystems in the system, ensuring that the entire system operates with the desired precision. If the servo motor lacks accuracy, it can be challenging to calibrate the system effectively, resulting in reduced precision in the system’s operation.

In summary, the accuracy of a servo motor has a direct impact on the precision of the system it operates in. An accurate servo motor enables precise positioning control, high repeatability, effective error compensation, system stability, and simplified calibration processes. These factors collectively contribute to achieving the desired precision in the system’s operation. Therefore, selecting a servo motor with the appropriate level of accuracy is crucial for ensuring the overall precision and performance of the system.

servo motor

Can you explain the difference between a servo motor and a regular electric motor?

A servo motor and a regular electric motor are both types of electric motors, but they have distinct differences in terms of design, control, and functionality.

A regular electric motor, also known as an induction motor or a DC motor, is designed to convert electrical energy into mechanical energy. It consists of a rotor, which rotates, and a stator, which surrounds the rotor and generates a rotating magnetic field. The rotor is connected to an output shaft, and when current flows through the motor’s windings, it creates a magnetic field that interacts with the stator’s magnetic field, resulting in rotational motion.

On the other hand, a servo motor is a more specialized type of electric motor that incorporates additional components for precise control of position, speed, and acceleration. It consists of a regular electric motor, a sensor or encoder, and a feedback control system. The sensor or encoder provides feedback on the motor’s current position, and this information is used by the control system to adjust the motor’s behavior.

The key difference between a servo motor and a regular electric motor lies in their control mechanisms. A regular electric motor typically operates at a fixed speed based on the voltage and frequency of the power supply. In contrast, a servo motor can be controlled to rotate to a specific angle or position and maintain that position accurately. The control system continuously monitors the motor’s actual position through the feedback sensor and adjusts the motor’s operation to achieve the desired position or follow a specific trajectory.

Another distinction is the torque output of the motors. Regular electric motors generally provide high torque at low speeds and lower torque at higher speeds. In contrast, servo motors are designed to deliver high torque at both low and high speeds, which makes them suitable for applications that require precise and dynamic motion control.

Furthermore, servo motors often have a more compact and lightweight design compared to regular electric motors. They are commonly used in applications where precise positioning, speed control, and responsiveness are critical, such as robotics, CNC machines, automation systems, and remote-controlled vehicles.

In summary, while both servo motors and regular electric motors are used to convert electrical energy into mechanical energy, servo motors offer enhanced control capabilities, precise positioning, and high torque at various speeds, making them well-suited for applications that require accurate and dynamic motion control.

China best Outdoor Heavy Duty Camera Pantilt Servo Radar Pan Tilt Motor   vacuum pump	China best Outdoor Heavy Duty Camera Pantilt Servo Radar Pan Tilt Motor   vacuum pump
editor by CX 2024-02-23