Tag Archives: hollow shaft motor

China Hot selling Hollow Shaft Direct Drive Electric Motor Robot Joint BLDC Servo Motor for 110mm Size vacuum pump belt

Product Description

Hollow Shaft Direct drive electric motor robot joint bldc servo motor for 110mm size

Product Description

The outer diameter of this series of joint modules ranges from 40mm to 170mm, with exquisite design and compact structure. The small size includes FOC control board, high-precision multi-turn absolute encoder, frameless torque motor, precision harmonic reducer and other main components , saving customers the labor and time cost of selecting, designing, purchasing, and assembling hundreds of mechanical and electronic components.
 

Product Features

The outer diameter is only 110mm, and the weight is 2.04kg.

The compact size of this product includes FOC control board, high-precision multi-turn absolute encoder, frameless torque motor, precision harmonic reducer and other main components. Low-power encoder with only 46 μA standby current.

Product Parameters

Model TD-80-110-PRO-XX TD-80-110-PRO-XXB
Ratio 50/80/100/120/160 50/80/100/120/160
Start-stop CHINAMFG torque (N.m) 121/169/194/207/217 121/169/194/207/217
Instantaneous maximum torque (N.m) 230/315/351/376/388 230/315/351/376/388
Rated torque (N.m) 68.5/107/133/133 68.5/107/133/133
Output CHINAMFG Speed (RPM) 59/37/30/24/18 59/37/30/24/18
Rated speed (RPM) 52/33/26/17/12 52/33/26/17/12
Motor power (W) 750 750
Supply voltage (V) 24-48 24-48
Rated current (A) 10.4 10.4
Peak current(A) 29.3 29.3
Encoder Resolution (Bit) 17 17
Backlash (arcsec) 20/20/10/10/10 20/20/10/10/10
communication bus CAN CAN
Length(mm) 80.6 107.8
Weight(kg) 2 2.57

 

Packaging & Shipping

Application

This kind of robot joint modules can be used in robots, humanoid robots, and exoskeletons, helping us to quickly build robot arms and greatly shorten the development cycle.

Company Profile

HangZhou CHINAMFG Mechanical&Electrical Equipment Co., Ltd. is a professional manufacturer of Robotic Joint Module. Our factory dedicates to the research of robot joint motor since 2571s, more than 10 years’ experience makes our product quality rank in the leading position in China. Wth an annual output of 80,000 sets of various products for the market, with high precision and stable performance, our robotic joint modules are welcomed by customers from India, Thailand, Iran, South Korea, Russian Federation, Sweden, Ireland, Poland, USA, France and so on.

After Sales Service

1. We accept small order of Joint module;
2. Sample order of Joint module delivery time is in 9 days, mass quantity order lead time is 9-15 days;
3. We can accept payment via paypal, T/T and L/C;
4.Quality assurance of our Joint module is 1 year, and we can provide you professional technical support;

5. We provide free software wand training how to use the products. Engineers are available for technical support.

 

FAQ

Q: Are you trading company or manufacturer?
A: We are manufacturer and trading company.

Q: Can I have a sample order?
A: Yes, we welcome sample order to test and check quality.

Q: How long is your delivery time?
A: Due to the complex process, production takes 8-10 working days. For customized goods, please check with us before order.

Q. How do you ship the goods and how long does it take to arrive?
A: Usually by express, like DHL, UPS, FedEx, EMS or TNT; By air and sea are also available.Express takes 3-15 days to arrive.

Q: What is your terms of payment?
A: We accept Trade Assurance Order, TT, Paypal, West Union and L/C.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Collaborate Cobot Robot
Operating Speed: Adjust Speed
Excitation Mode: Excited
Samples:
US$ 1182/Piece
1 Piece(Min.Order)

|

Order Sample

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

How are servo motors used in CNC machines and other precision machining equipment?

Servo motors play a crucial role in CNC (Computer Numerical Control) machines and other precision machining equipment. They provide precise and dynamic control over the movement of various axes, enabling high-accuracy positioning, rapid speed changes, and smooth motion profiles. Here’s a detailed explanation of how servo motors are used in CNC machines and precision machining equipment:

1. Axis Control:

CNC machines typically have multiple axes, such as X, Y, and Z for linear movements, as well as rotary axes for rotational movements. Servo motors are employed to drive each axis, converting electrical signals from the CNC controller into mechanical motion. The position, velocity, and acceleration of the servo motors are precisely controlled to achieve accurate and repeatable positioning of the machine’s tool or workpiece.

2. Feedback and Closed-Loop Control:

Servo motors in CNC machines are equipped with feedback devices, such as encoders or resolvers, to provide real-time information about the motor’s actual position. This feedback is used in a closed-loop control system, where the CNC controller continuously compares the desired position with the actual position and adjusts the motor’s control signals accordingly. This closed-loop control ensures accurate positioning and compensates for any errors, such as mechanical backlash or load variations.

3. Rapid and Precise Speed Changes:

Servo motors offer excellent dynamic response, allowing CNC machines to achieve rapid and precise speed changes during machining operations. By adjusting the control signals to the servo motors, the CNC controller can smoothly accelerate or decelerate the machine’s axes, resulting in efficient machining processes and reduced cycle times.

4. Contouring and Path Tracing:

CNC machines often perform complex machining tasks, such as contouring or following intricate paths. Servo motors enable precise path tracing by accurately controlling the position and velocity of the machine’s tool along the programmed path. This capability is crucial for producing intricate shapes, smooth curves, and intricate details with high precision.

5. Spindle Control:

In addition to axis control, servo motors are also used to control the spindle in CNC machines. The spindle motor, typically a servo motor, rotates the cutting tool or workpiece at the desired speed. Servo control ensures precise speed and torque control, allowing for optimal cutting conditions and surface finish quality.

6. Tool Changers and Automatic Tool Compensation:

CNC machines often feature automatic tool changers to switch between different cutting tools during machining operations. Servo motors are utilized to precisely position the tool changer mechanism, enabling quick and accurate tool changes. Additionally, servo motors can be used for automatic tool compensation, adjusting the tool’s position or orientation to compensate for wear, tool length variations, or tool offsets.

7. Synchronized Motion and Multi-Axis Coordination:

Servo motors enable synchronized motion and coordination between multiple axes in CNC machines. By precisely controlling the servo motors on different axes, complex machining operations involving simultaneous movements can be achieved. This capability is vital for tasks such as 3D contouring, thread cutting, and multi-axis machining.

In summary, servo motors are integral components of CNC machines and precision machining equipment. They provide accurate and dynamic control over the machine’s axes, enabling high-precision positioning, rapid speed changes, contouring, spindle control, tool changers, and multi-axis coordination. The combination of servo motor technology and CNC control systems allows for precise, efficient, and versatile machining operations in various industries.

servo motor

How does the accuracy of a servo motor impact the precision of a system it operates in?

The accuracy of a servo motor has a significant impact on the precision of the system in which it operates. Here’s how the accuracy of a servo motor influences the precision of the system:

1. Positioning Control:

The accuracy of a servo motor directly affects the precision of positioning control in a system. A servo motor with high accuracy can accurately and consistently reach and maintain the desired position. This precision in positioning control is crucial in applications where precise movements, such as in robotics or manufacturing processes, are required. If the servo motor lacks accuracy, it may introduce position errors, leading to reduced precision in the system’s overall operation.

2. Repeatability:

Repeatability refers to the ability of a system to consistently achieve the same position or motion repeatedly. The accuracy of a servo motor plays a vital role in achieving high repeatability. A servo motor with high accuracy will consistently return to the same position when commanded to do so. This level of repeatability is essential in applications where consistent and precise movements are necessary, such as in assembly lines or pick-and-place operations. A lack of accuracy in the servo motor can result in variations in position from one cycle to another, reducing the overall precision of the system.

3. Error Compensation:

The accuracy of a servo motor is crucial for error compensation in a system. In many applications, external factors, such as variations in load or environmental conditions, can introduce errors in the system’s operation. An accurate servo motor can help compensate for these errors by precisely adjusting its position or motion based on feedback from sensors. This error compensation capability contributes to maintaining the precision of the system, as the servo motor can continuously adjust to minimize any deviations from the desired position or trajectory.

4. System Stability:

The accuracy of the servo motor also impacts the stability of the system. A servo motor with high accuracy can achieve stable movements and maintain control over the system’s dynamics. It can respond accurately to control signals, preventing overshoot, oscillations, or erratic behaviors that can degrade system precision. On the other hand, a servo motor with lower accuracy may introduce instability or erratic movements, compromising the overall precision of the system.

5. System Calibration and Calibration:

An accurate servo motor simplifies the calibration and fine-tuning process of a system. When a system requires calibration, an accurate servo motor provides a reliable reference point for adjustments. The precise and consistent movements of the servo motor make it easier to calibrate other components or subsystems in the system, ensuring that the entire system operates with the desired precision. If the servo motor lacks accuracy, it can be challenging to calibrate the system effectively, resulting in reduced precision in the system’s operation.

In summary, the accuracy of a servo motor has a direct impact on the precision of the system it operates in. An accurate servo motor enables precise positioning control, high repeatability, effective error compensation, system stability, and simplified calibration processes. These factors collectively contribute to achieving the desired precision in the system’s operation. Therefore, selecting a servo motor with the appropriate level of accuracy is crucial for ensuring the overall precision and performance of the system.

servo motor

Can you explain the difference between a servo motor and a regular electric motor?

A servo motor and a regular electric motor are both types of electric motors, but they have distinct differences in terms of design, control, and functionality.

A regular electric motor, also known as an induction motor or a DC motor, is designed to convert electrical energy into mechanical energy. It consists of a rotor, which rotates, and a stator, which surrounds the rotor and generates a rotating magnetic field. The rotor is connected to an output shaft, and when current flows through the motor’s windings, it creates a magnetic field that interacts with the stator’s magnetic field, resulting in rotational motion.

On the other hand, a servo motor is a more specialized type of electric motor that incorporates additional components for precise control of position, speed, and acceleration. It consists of a regular electric motor, a sensor or encoder, and a feedback control system. The sensor or encoder provides feedback on the motor’s current position, and this information is used by the control system to adjust the motor’s behavior.

The key difference between a servo motor and a regular electric motor lies in their control mechanisms. A regular electric motor typically operates at a fixed speed based on the voltage and frequency of the power supply. In contrast, a servo motor can be controlled to rotate to a specific angle or position and maintain that position accurately. The control system continuously monitors the motor’s actual position through the feedback sensor and adjusts the motor’s operation to achieve the desired position or follow a specific trajectory.

Another distinction is the torque output of the motors. Regular electric motors generally provide high torque at low speeds and lower torque at higher speeds. In contrast, servo motors are designed to deliver high torque at both low and high speeds, which makes them suitable for applications that require precise and dynamic motion control.

Furthermore, servo motors often have a more compact and lightweight design compared to regular electric motors. They are commonly used in applications where precise positioning, speed control, and responsiveness are critical, such as robotics, CNC machines, automation systems, and remote-controlled vehicles.

In summary, while both servo motors and regular electric motors are used to convert electrical energy into mechanical energy, servo motors offer enhanced control capabilities, precise positioning, and high torque at various speeds, making them well-suited for applications that require accurate and dynamic motion control.

China Hot selling Hollow Shaft Direct Drive Electric Motor Robot Joint BLDC Servo Motor for 110mm Size   vacuum pump belt	China Hot selling Hollow Shaft Direct Drive Electric Motor Robot Joint BLDC Servo Motor for 110mm Size   vacuum pump belt
editor by CX 2024-02-11

China manufacturer 142 Robot Joint Motor Hollow Shaft Robot Joint Servo Actuator Rotary Robot Joint Motor with Great quality

Product Description

142 robot joint Motor hollow shaft robot joint servo actuator rotary robot joint motor

 

Product Description

This eRob series robot joint module is a standardized joint module product based on our own servo drives and absolute encoders, based on  years of experience in serving customers, making robot development easier, faster, safer. 

This eRob series robot joint modules include eRob70,eRob80, eRob90,eRob110, eRob142, eRob170 etc, with exquisite design and compact structure.The compact size include servo drivers, motor side absolute value encoder, output side absolute value encoder, and frameless torque motor, brake, precision harmonic reducers and other main components, which save customers hundreds of mechanical and electronic compenents selection, design, producement, assembly labor and time costs. 

Product Features

Save the manpower and time cost of selecting, designing, purchasing and assembling hundreds of mechanical and electronic devices.

This series robot joint module includes Eight core components as below, motor end absolute value encoder, multi-turn absolute encoder at output, Frameless Torque Motor, precise harmonic reducer,Torque sensor, friction brake retainer and DC drive temperature sensor.

Built-in servo driver. Communication protocols
With EtherCAT, CANopen, Modbus communication protocols.
Position,Speed, Current loop PID adjustable online.
Built-in ± 10V analog input.
Pulse and direction, I/O, RS485,
External encoder and STO interface,
All in the space of DxL=70x67mm

Built-in dual absolute encoder. Dual loop position control 
19/20-bit absolute multiturn encoder for output shaft.
Repeatability up to ±7 arc seconds.
Absolute accuracy up to ±15 arc seconds.
Always have real absolute position,
and multi-turn counter when power-off.

Friction brake inside
Brake smooth and stable.
No gap; No backlash.
No need to move when power-on.
No wear and tear.
Can be used as Emergency Stop.

Product Parameters

Model eRob142H
Harmonic reducer-ratio SHG
32-50
SHG
32-80
SHG
32-100
SHG
32-120
Start-stop CHINAMFG torque(N.m) 281 395 433 459
Rated torque(N.m) 99 153 178 178
Momentary allowable maximum torque(N.m) 497 738 841 892
Peak speed of output(RPM) 40 25 20 16.7
Motor power(W) 1000
Rated current(A) 26
Peak current(A) 56
Without brake model Inertia of rotor(g.mm²) 1244894
Outer diameter x length (mm) 142×133.9
Weight(kg) 6.49
With brake model Inertia of rotor(g.mm²) 1273287
Outer diameter x length (mm) 142×133.9
Weight(kg) 6.7
Common parameter Power supply voltage: 48V (±10%), through hole diameter: 18mm, IP class: IP54, brake type: friction damping brake
Optional assembly configuration Communication mode: EtherCAT/CANopen/Modbus, output encoder resolution: 19/20Bit, repeat/absolute positioning accuracy: ±7/±15 arcseconds or ±10/±25 arcseconds

Packaging & Shipping

Packaging list

1. eRob joint module*1
2.48V power connector (2Pin)*2
3.CANopen connector and wiring (3 Pin)*2
4.EtherCAT connector and wiring (4Pin)*2
5.I/O connector and wiring (12Pin)-Optional

Shping list
Shipping list of this series robot joint modules include 1pcs joint module, 2pcs 48V power connector(2pin), 2pcs CANopen connector &wiring, 2pcs EtherCAT connector&wiring(4 pin) and 1pcs I/O connector &wiring(12pin).
Usally,ship by express , delivery time 5-7working days . 

Application

This kind of robot joint modules could be used for Motion Control Scheme for Exoskeleton Robot, Medical Devices Gastrointestinal Endoscopic, Medical rehabilitation robot, Bigdog, Industrial robot arm, welding robot etc.

Company Profile

HangZhou CHINAMFG Mechanical&Electrical Equipment Co., Ltd is a professional manufacturer of  Robotic Joint Module . Our factory dedicates to the research of robot joint motor since 2571s, more than 10 years’ experience makes our product quality rank in the leading position in China. Wth an annual output of 8,000 sets of various products for the market, with high precision and stable performance, our robotic joint modules are welcomed by customers from India, Thailand, Iran, South Korea, Russian Federation, Sweden, Ireland, Poland, USA, France and so on.

 

After Sales Service

1. We accept small order of robot joint modules;
2. Sample order of robot joint modules delivery time is in 10 days, mass quantity order lead time is 7-15 days;
3. We can accept payment via paypal, T/T and L/C;
4.Quality assurance of our robot joint modules is 1 year, and we can provide you professional technical support;
5. We provide free software wand training how to use the robot joint modules. Engineers are available for technical support.
 

FAQ

Q: Are you trading company or manufacturer?
A: We are manufacturer and seller.

Q: Can I have a sample order?
A: Yes, we welcome sample order to test and check quality.

Q: How long is your delivery time?
A: Due to the complex process, production takes 8-10 working days. For customized goods, please check with us before order.

Q. How do you ship the goods and how long does it take to arrive?
A: Usually by express, like DHL, UPS, FedEx, EMS or TNT; By air and sea are also available.
Express takes 3-15 days to arrive.

Q: What is your terms of payment?
A: We accept Trade Assurance Order, TT, Paypal, West Union and L/C.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Low Speed
Excitation Mode: Excited
Samples:
US$ 1180/Piece
1 Piece(Min.Order)

|

Order Sample

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

What maintenance practices are recommended for ensuring the longevity of servo motors?

Maintaining servo motors properly is crucial to ensure their longevity and reliable performance. Here are some recommended maintenance practices:

1. Regular Cleaning:

Regularly clean the servo motor to remove dust, debris, and other contaminants that can affect its performance. Use a soft brush or compressed air to clean the motor’s exterior and ventilation ports. Avoid using excessive force or liquid cleaners that could damage the motor.

2. Lubrication:

Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant for the motor. Lubricate the motor’s bearings, gears, and other moving parts as per the specified schedule. Proper lubrication reduces friction, minimizes wear, and helps maintain optimal performance.

3. Inspections:

Regularly inspect the servo motor for signs of wear, damage, or loose connections. Check for any unusual noises, vibrations, or overheating during operation, as these can indicate potential issues. If any abnormalities are detected, consult the manufacturer’s documentation or seek professional assistance for further evaluation and repair.

4. Electrical Connections:

Ensure that all electrical connections to the servo motor, such as power cables and signal wires, are secure and properly insulated. Loose or damaged connections can lead to electrical problems, voltage fluctuations, or signal interference, which can affect the motor’s performance and longevity.

5. Environmental Considerations:

Take into account the operating environment of the servo motor. Ensure that the motor is protected from excessive moisture, dust, extreme temperatures, and corrosive substances. If necessary, use appropriate enclosures or protective measures to safeguard the motor from adverse environmental conditions.

6. Software and Firmware Updates:

Stay updated with the latest software and firmware releases provided by the servo motor manufacturer. These updates often include bug fixes, performance enhancements, and new features that can improve the motor’s functionality and reliability. Follow the manufacturer’s instructions for safely updating the motor’s software or firmware.

7. Training and Documentation:

Ensure that personnel responsible for the maintenance of servo motors are properly trained and familiar with the manufacturer’s guidelines and documentation. This includes understanding recommended maintenance procedures, safety precautions, and troubleshooting techniques. Regular training and access to up-to-date documentation are essential for effective servo motor maintenance.

8. Professional Servicing:

If a servo motor requires complex repairs or servicing beyond regular maintenance, it is advisable to consult a qualified technician or contact the manufacturer’s service center. Attempting to repair or modify the motor without proper expertise can lead to further damage or safety hazards.

By following these maintenance practices, servo motors can operate optimally and have an extended lifespan. Regular cleaning, lubrication, inspections, secure electrical connections, environmental considerations, software updates, training, and professional servicing all contribute to ensuring the longevity and reliable performance of servo motors.

servo motor

What factors should be considered when selecting a servo motor for a specific application?

When selecting a servo motor for a specific application, several factors need to be considered. These factors help ensure that the chosen servo motor meets the requirements and performs optimally in the intended application. Here are some key factors to consider:

1. Torque and Power Requirements:

One of the primary considerations is the torque and power requirements of the application. The servo motor should be able to generate sufficient torque to handle the load and overcome any resistance or friction in the system. Additionally, the power rating of the motor should match the power supply available in the application. It is essential to evaluate the torque-speed characteristics of the servo motor to ensure it can deliver the required performance.

2. Speed and Acceleration:

The required speed and acceleration capabilities of the servo motor should align with the application’s needs. Different applications have varying speed and acceleration requirements, and the servo motor should be able to meet these demands. It is crucial to consider both the maximum speed that the motor can achieve and the time it takes to accelerate or decelerate to specific speeds. Evaluating the servo motor’s speed-torque characteristics and acceleration capabilities is necessary for selecting the right motor.

3. Positioning Accuracy and Repeatability:

The desired positioning accuracy and repeatability of the application play a significant role in servo motor selection. If precise positioning is crucial, a servo motor with high accuracy and low positioning errors should be chosen. The feedback mechanism, such as encoders or resolvers, should provide the required resolution to achieve the desired accuracy. Repeatability, the ability to consistently reach the same position, should also be considered, especially in applications where repetitive movements are necessary.

4. Environmental Conditions:

The environmental conditions in which the servo motor will operate should be taken into account. Factors such as temperature extremes, humidity, dust, and vibration can affect the motor’s performance and lifespan. In harsh environments, it may be necessary to choose a servo motor with appropriate protection ratings, such as IP (Ingress Protection) ratings, to ensure reliable operation and longevity.

5. Control System Compatibility:

The compatibility of the servo motor with the control system used in the application is crucial. The motor should be compatible with the control signals and communication protocols employed in the system. This includes considerations such as voltage compatibility, control signal types (analog, digital, pulse), and communication interfaces (such as Ethernet, CAN, or Modbus). Ensuring compatibility will facilitate seamless integration and efficient control of the servo motor within the application.

6. Size and Weight Constraints:

The physical size and weight limitations of the application should be considered when selecting a servo motor. The motor’s dimensions should fit within the available space, and its weight should not exceed the application’s weight capacity. Compact and lightweight servo motors may be preferred in applications where space is limited or weight is a critical factor.

7. Cost Considerations:

The cost of the servo motor and its overall value for the application should be evaluated. It is essential to consider the initial purchase cost as well as the long-term maintenance and operational costs. While cost is a factor, it should not be the sole determining factor, as compromising on quality or performance may lead to suboptimal results.

By considering these factors, one can make an informed decision when selecting a servo motor for a specific application. It is recommended to consult with manufacturers or experts in the field to ensure the chosen servo motor meets the application’s requirements and provides reliable and efficient performance.

servo motor

Can you explain the difference between a servo motor and a regular electric motor?

A servo motor and a regular electric motor are both types of electric motors, but they have distinct differences in terms of design, control, and functionality.

A regular electric motor, also known as an induction motor or a DC motor, is designed to convert electrical energy into mechanical energy. It consists of a rotor, which rotates, and a stator, which surrounds the rotor and generates a rotating magnetic field. The rotor is connected to an output shaft, and when current flows through the motor’s windings, it creates a magnetic field that interacts with the stator’s magnetic field, resulting in rotational motion.

On the other hand, a servo motor is a more specialized type of electric motor that incorporates additional components for precise control of position, speed, and acceleration. It consists of a regular electric motor, a sensor or encoder, and a feedback control system. The sensor or encoder provides feedback on the motor’s current position, and this information is used by the control system to adjust the motor’s behavior.

The key difference between a servo motor and a regular electric motor lies in their control mechanisms. A regular electric motor typically operates at a fixed speed based on the voltage and frequency of the power supply. In contrast, a servo motor can be controlled to rotate to a specific angle or position and maintain that position accurately. The control system continuously monitors the motor’s actual position through the feedback sensor and adjusts the motor’s operation to achieve the desired position or follow a specific trajectory.

Another distinction is the torque output of the motors. Regular electric motors generally provide high torque at low speeds and lower torque at higher speeds. In contrast, servo motors are designed to deliver high torque at both low and high speeds, which makes them suitable for applications that require precise and dynamic motion control.

Furthermore, servo motors often have a more compact and lightweight design compared to regular electric motors. They are commonly used in applications where precise positioning, speed control, and responsiveness are critical, such as robotics, CNC machines, automation systems, and remote-controlled vehicles.

In summary, while both servo motors and regular electric motors are used to convert electrical energy into mechanical energy, servo motors offer enhanced control capabilities, precise positioning, and high torque at various speeds, making them well-suited for applications that require accurate and dynamic motion control.

China manufacturer 142 Robot Joint Motor Hollow Shaft Robot Joint Servo Actuator Rotary Robot Joint Motor   with Great quality China manufacturer 142 Robot Joint Motor Hollow Shaft Robot Joint Servo Actuator Rotary Robot Joint Motor   with Great quality
editor by CX 2024-02-07

China high quality Hollow Shaft Robot Servo Motor for Collaborative Robot Arm vacuum pump belt

Product Description

Hollow Shaft Robot Servo Motor for Collaborative Robot Arm

Product Description

The outer diameter of this series of joint modules ranges from 40mm to 170mm, with exquisite design and compact structure. The small size includes FOC control board, high-precision multi-turn absolute encoder, frameless torque motor, precision harmonic reducer and other main components , saving customers the labor and time cost of selecting, designing, purchasing, and assembling hundreds of mechanical and electronic components.
 

Product Features

The smallest size is only 40mm, and the weight is 0.13kg

The compact size of this product includes FOC control board, high-precision multi-turn absolute encoder, frameless torque motor, precision harmonic reducer and other main components
This series of joint modules have rated torque of 2.3Nm~586Nm and motor power of 36W~1500W for customers to choose
17-bit single-turn absolute encoder + 16-bit multi-turn absolute encoder at the motor end, which can memorize single-turn and multi-turn power-off positions

Low-power encoder with only 46 μA standby current

Product Parameters

Model

TD-50-70-PRO-XX

TD-50-70-PRO-XXB

Ratio

50/80/100

50/80/100

Start-stop CHINAMFG Torque (N.m)

23/29/34

23/29/34

Instantaneous maximum Torque (N.m)

43/59/71

43/59/71

Rated Torque (N.m)

8.6/13.5/13.5

8.6/13.5/13.5

OutpuT CHINAMFG Speed (RPM)

100/62/50

100/62/50

Rated speed (RPM)

75/46/37

75/46/37

Motor power (W)

150

150

Supply voltage (V)

24-48

24-48

Rated current (A)

3.6

3.6

Peak current(A)

10.8

10.8

Encoder Resoluton (Bit)

17

17

Backlash (arcsec)

20/20/10

20/20/10

communication bus

CAN

CAN

Length(mm)

58.7

83.7

Through hole(mm)

12

10

Weight(kg)

0.58

0.8

Packaging & Shipping

 

Application

This kind of robot joint modules can be used in robots, humanoid robots, and exoskeletons, helping us to quickly build robot arms and greatly shorten the development cycle.

Company Profile

HangZhou CHINAMFG Mechanical&Electrical Equipment Co., Ltd is a professional manufacturer of Robotic Joint Module. Our factory dedicates to the research of robot joint motor since 2571s, more than 10 years’ experience makes our product quality rank in the leading position in China. Wth an annual output of 80,000 sets of various products for the market, with high precision and stable performance, our robotic joint modules are welcomed by customers from India, Thailand, Iran, South Korea, Russian Federation, Sweden, Ireland, Poland, USA, France and so on.

 

After Sales Service

1. We accept small order of Joint module;
2. Sample order of Joint module delivery time is in 9 days, mass quantity order lead time is 9-15 days;
3. We can accept payment via paypal, T/T and L/C;
4.Quality assurance of our Joint module is 1 year, and we can provide you professional technical support;
5. We provide free software wand training how to use the products. Engineers are available for technical support.
 

FAQ

Q: Are you trading company or manufacturer?
A: We are manufacturer and trading company.

Q: Can I have a sample order?
A: Yes, we welcome sample order to test and check quality.

Q: How long is your delivery time?
A: Due to the complex process, production takes 8-10 working days. For customized goods, please check with us before order.

Q. How do you ship the goods and how long does it take to arrive?
A: Usually by express, like DHL, UPS, FedEx, EMS or TNT; By air and sea are also available.Express takes 3-15 days to arrive.

Q: What is your terms of payment?
A: We accept Trade Assurance Order, TT, Paypal, West Union and L/C.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Aobotic Arms
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2
Samples:
US$ 780/Piece
1 Piece(Min.Order)

|

servo motor

What maintenance practices are recommended for ensuring the longevity of servo motors?

Maintaining servo motors properly is crucial to ensure their longevity and reliable performance. Here are some recommended maintenance practices:

1. Regular Cleaning:

Regularly clean the servo motor to remove dust, debris, and other contaminants that can affect its performance. Use a soft brush or compressed air to clean the motor’s exterior and ventilation ports. Avoid using excessive force or liquid cleaners that could damage the motor.

2. Lubrication:

Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant for the motor. Lubricate the motor’s bearings, gears, and other moving parts as per the specified schedule. Proper lubrication reduces friction, minimizes wear, and helps maintain optimal performance.

3. Inspections:

Regularly inspect the servo motor for signs of wear, damage, or loose connections. Check for any unusual noises, vibrations, or overheating during operation, as these can indicate potential issues. If any abnormalities are detected, consult the manufacturer’s documentation or seek professional assistance for further evaluation and repair.

4. Electrical Connections:

Ensure that all electrical connections to the servo motor, such as power cables and signal wires, are secure and properly insulated. Loose or damaged connections can lead to electrical problems, voltage fluctuations, or signal interference, which can affect the motor’s performance and longevity.

5. Environmental Considerations:

Take into account the operating environment of the servo motor. Ensure that the motor is protected from excessive moisture, dust, extreme temperatures, and corrosive substances. If necessary, use appropriate enclosures or protective measures to safeguard the motor from adverse environmental conditions.

6. Software and Firmware Updates:

Stay updated with the latest software and firmware releases provided by the servo motor manufacturer. These updates often include bug fixes, performance enhancements, and new features that can improve the motor’s functionality and reliability. Follow the manufacturer’s instructions for safely updating the motor’s software or firmware.

7. Training and Documentation:

Ensure that personnel responsible for the maintenance of servo motors are properly trained and familiar with the manufacturer’s guidelines and documentation. This includes understanding recommended maintenance procedures, safety precautions, and troubleshooting techniques. Regular training and access to up-to-date documentation are essential for effective servo motor maintenance.

8. Professional Servicing:

If a servo motor requires complex repairs or servicing beyond regular maintenance, it is advisable to consult a qualified technician or contact the manufacturer’s service center. Attempting to repair or modify the motor without proper expertise can lead to further damage or safety hazards.

By following these maintenance practices, servo motors can operate optimally and have an extended lifespan. Regular cleaning, lubrication, inspections, secure electrical connections, environmental considerations, software updates, training, and professional servicing all contribute to ensuring the longevity and reliable performance of servo motors.

servo motor

How does the accuracy of a servo motor impact the precision of a system it operates in?

The accuracy of a servo motor has a significant impact on the precision of the system in which it operates. Here’s how the accuracy of a servo motor influences the precision of the system:

1. Positioning Control:

The accuracy of a servo motor directly affects the precision of positioning control in a system. A servo motor with high accuracy can accurately and consistently reach and maintain the desired position. This precision in positioning control is crucial in applications where precise movements, such as in robotics or manufacturing processes, are required. If the servo motor lacks accuracy, it may introduce position errors, leading to reduced precision in the system’s overall operation.

2. Repeatability:

Repeatability refers to the ability of a system to consistently achieve the same position or motion repeatedly. The accuracy of a servo motor plays a vital role in achieving high repeatability. A servo motor with high accuracy will consistently return to the same position when commanded to do so. This level of repeatability is essential in applications where consistent and precise movements are necessary, such as in assembly lines or pick-and-place operations. A lack of accuracy in the servo motor can result in variations in position from one cycle to another, reducing the overall precision of the system.

3. Error Compensation:

The accuracy of a servo motor is crucial for error compensation in a system. In many applications, external factors, such as variations in load or environmental conditions, can introduce errors in the system’s operation. An accurate servo motor can help compensate for these errors by precisely adjusting its position or motion based on feedback from sensors. This error compensation capability contributes to maintaining the precision of the system, as the servo motor can continuously adjust to minimize any deviations from the desired position or trajectory.

4. System Stability:

The accuracy of the servo motor also impacts the stability of the system. A servo motor with high accuracy can achieve stable movements and maintain control over the system’s dynamics. It can respond accurately to control signals, preventing overshoot, oscillations, or erratic behaviors that can degrade system precision. On the other hand, a servo motor with lower accuracy may introduce instability or erratic movements, compromising the overall precision of the system.

5. System Calibration and Calibration:

An accurate servo motor simplifies the calibration and fine-tuning process of a system. When a system requires calibration, an accurate servo motor provides a reliable reference point for adjustments. The precise and consistent movements of the servo motor make it easier to calibrate other components or subsystems in the system, ensuring that the entire system operates with the desired precision. If the servo motor lacks accuracy, it can be challenging to calibrate the system effectively, resulting in reduced precision in the system’s operation.

In summary, the accuracy of a servo motor has a direct impact on the precision of the system it operates in. An accurate servo motor enables precise positioning control, high repeatability, effective error compensation, system stability, and simplified calibration processes. These factors collectively contribute to achieving the desired precision in the system’s operation. Therefore, selecting a servo motor with the appropriate level of accuracy is crucial for ensuring the overall precision and performance of the system.

servo motor

What is a servo motor, and how does it function in automation systems?

A servo motor is a type of motor specifically designed for precise control of angular or linear position, velocity, and acceleration. It is widely used in various automation systems where accurate motion control is required. Let’s explore the concept of servo motors and how they function in automation systems:

A servo motor consists of a motor, a position feedback device (such as an encoder or resolver), and a control system. The control system receives input signals, typically in the form of electrical pulses or analog signals, indicating the desired position or speed. Based on these signals and the feedback from the position sensor, the control system adjusts the motor’s operation to achieve the desired motion.

The functioning of a servo motor in an automation system involves the following steps:

  1. Signal Input: The automation system provides a control signal to the servo motor, indicating the desired position, speed, or other motion parameters. This signal can be generated by a human operator, a computer, a programmable logic controller (PLC), or other control devices.
  2. Feedback System: The servo motor incorporates a position feedback device, such as an encoder or resolver, which continuously monitors the motor’s actual position. This feedback information is sent back to the control system, allowing it to compare the actual position with the desired position specified by the input signal.
  3. Control System: The control system, typically housed within the servo motor or an external servo drive, receives the input signal and the feedback from the position sensor. It processes this information and generates the appropriate control signals to the motor.
  4. Motor Operation: Based on the control signals received from the control system, the servo motor adjusts its operation to achieve the desired motion. The control system varies the motor’s voltage, current, or frequency to control the motor’s speed, torque, or position accurately.
  5. Closed-Loop Control: Servo motors operate in a closed-loop control system. The feedback information from the position sensor allows the control system to continuously monitor and adjust the motor’s operation to minimize any deviation between the desired position and the actual position. This closed-loop control mechanism provides high accuracy, repeatability, and responsiveness in motion control applications.

One of the key advantages of servo motors in automation systems is their ability to provide precise and dynamic motion control. They can rapidly accelerate, decelerate, and change direction with high accuracy, allowing for intricate and complex movements. Servo motors are widely used in applications such as robotics, CNC machines, printing presses, packaging equipment, and automated manufacturing systems.

In summary, a servo motor is a specialized motor that enables accurate control of position, velocity, and acceleration in automation systems. Through the combination of a control system and a position feedback device, servo motors can precisely adjust their operation to achieve the desired motion. Their closed-loop control mechanism and high responsiveness make them an essential component in various applications requiring precise and dynamic motion control.

China high quality Hollow Shaft Robot Servo Motor for Collaborative Robot Arm   vacuum pump belt	China high quality Hollow Shaft Robot Servo Motor for Collaborative Robot Arm   vacuum pump belt
editor by CX 2024-02-02

China Good quality Tinsmith High Torque BLDC Robot Arm Joint Module Electric Brushless Cobot Actuator Hollow Shaft Frameless Thin Waterproof DC Servo Robotic Harmonic Drive Motor with Hot selling

Product Description

Tinsmith High Torque BLDC Robot Arm Joint Motor Electric Brushless Cobot Driver Actuator Module Hollow Shaft Frameless Waterproof DC Servo Motor

Product Description

 

The outer diameter of this series of joint modules ranges from 40mm to 170mm, with exquisite design and compact structure. The small size includes FOC control board, high-precision multi-turn absolute encoder, frameless torque motor, precision harmonic reducer and other main components , saving customers the labor and time cost of selecting, designing, purchasing, and assembling hundreds of mechanical and electronic components.
 

Product Features

The smallest size is only 40mm, and the weight is 0.13kg

The compact size of this product includes FOC control board, high-precision multi-turn absolute encoder, frameless torque motor, precision harmonic reducer and other main components

Low-power encoder with only 46 μA standby current.

Product Parameters

Model TD-70-90-PRO-XX TD-70-90-PRO-XXB
Ratio 50/80/100/120 50/80/100/120
Start-stop CHINAMFG torque (N.m) 69/91/102/108 69/91/102/108
Instantaneous maximum torque (N.m) 121/158/182/182 121/158/182/182
Rated torque (N.m) 42/58/91/61 42/58/91/61
Output CHINAMFG Speed (RPM) 80/65/40/35 80/65/40/35
Rated speed (RPM) 61/38/30/24 61/38/30/24
Motor power (W) 500 500
Supply voltage (V) 24-48 24-48
Rated current (A) 8.4 8.4
Peak current(A) 24 24
Encoder Resolution (Bit) 17 17
Backlash (arcsec) 20/20/10/10 20/20/10/10
communication bus CAN CAN
Length(mm) 72.6 96.6
Weight(kg) 1.25 1.67

 

Packaging & Shipping

Application

This kind of robot joint modules can be used in robots, humanoid robots, and exoskeletons, helping us to quickly build robot arms and greatly shorten the development cycle.

Company Profile

HangZhou CHINAMFG Mechanical&Electrical Equipment Co., Ltd. is a professional manufacturer of Robotic Joint Module. Our factory dedicates to the research of robot joint motor since 2571s, more than 10 years’ experience makes our product quality rank in the leading position in China. Wth an annual output of 80,000 sets of various products for the market, with high precision and stable performance, our robotic joint modules are welcomed by customers from India, Thailand, Iran, South Korea, Russian Federation, Sweden, Ireland, Poland, USA, France and so on.

After Sales Service

1. We accept small order of Joint module;
2. Sample order of Joint module delivery time is in 9 days, mass quantity order lead time is 9-15 days;
3. We can accept payment via paypal, T/T and L/C;
4.Quality assurance of our Joint module is 1 year, and we can provide you professional technical support;

5. We provide free software wand training how to use the products. Engineers are available for technical support.

FAQ

Q: Are you trading company or manufacturer?
A: We are manufacturer and trading company.

Q: Can I have a sample order?
A: Yes, we welcome sample order to test and check quality.

Q: How long is your delivery time?
A: Due to the complex process, production takes 8-10 working days. For customized goods, please check with us before order.

Q. How do you ship the goods and how long does it take to arrive?
A: Usually by express, like DHL, UPS, FedEx, EMS or TNT; By air and sea are also available.Express takes 3-15 days to arrive.

Q: What is your terms of payment?
A: We accept Trade Assurance Order, TT, Paypal, West Union and L/C.

Application: Industial Robot
Operating Speed: Adjust Speed
Excitation Mode: Excited
Samples:
US$ 1045/Piece
1 Piece(Min.Order)

|

Order Sample

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

What role does the controller play in the overall performance of a servo motor?

The controller plays a crucial role in the overall performance of a servo motor system. It is responsible for monitoring and regulating the motor’s operation to achieve the desired motion and maintain system stability. Let’s explore in detail the role of the controller in the performance of a servo motor:

1. Motion Control:

The controller is responsible for generating precise control signals that dictate the motor’s speed, torque, and position. It receives input commands from the user or higher-level control system and translates them into appropriate control signals for the servo motor. By accurately controlling the motor’s motion, the controller enables precise positioning, smooth acceleration and deceleration, and the ability to follow complex trajectories. The controller’s effectiveness in generating accurate and responsive control signals directly impacts the motor’s motion control capabilities.

2. Feedback Control:

The controller utilizes feedback from position sensors, such as encoders, to monitor the motor’s actual position, speed, and other parameters. It compares the desired motion profile with the actual motor behavior and continuously adjusts the control signals to minimize any deviations or errors. This closed-loop feedback control mechanism allows the controller to compensate for disturbances, variations in load conditions, and other factors that may affect the motor’s performance. By continuously monitoring and adjusting the control signals based on feedback, the controller helps maintain accurate and stable motor operation.

3. PID Control:

Many servo motor controllers employ Proportional-Integral-Derivative (PID) control algorithms to regulate the motor’s behavior. PID control calculates control signals based on the error between the desired setpoint and the actual motor response. The proportional term responds to the present error, the integral term accounts for accumulated past errors, and the derivative term considers the rate of change of the error. By tuning the PID parameters, the controller can achieve optimal performance in terms of response time, stability, and steady-state accuracy. Properly configured and tuned PID control greatly influences the servo motor’s ability to follow commands accurately and efficiently.

4. Trajectory Planning:

In applications requiring complex motion profiles or trajectories, the controller plays a vital role in trajectory planning. It determines the optimal path and speed profile for the motor to follow, taking into account constraints such as acceleration limits, jerk limits, and mechanical limitations. The controller generates the required control signals to achieve the desired trajectory, ensuring smooth and precise motion. Effective trajectory planning by the controller enhances the motor’s performance in applications that involve intricate or high-speed movements.

5. System Monitoring and Protection:

The controller monitors various parameters of the servo motor system, including temperature, current, voltage, and other diagnostic information. It incorporates protective measures to prevent damage or excessive stress on the motor. The controller can implement safety features such as overcurrent protection, over-temperature protection, and fault detection mechanisms. By actively monitoring and safeguarding the motor and the system, the controller helps prevent failures, prolongs the motor’s lifespan, and ensures safe and reliable operation.

6. Communication and Integration:

The controller facilitates communication and integration with other components or systems within the overall automation setup. It may support various communication protocols, such as Ethernet, CAN bus, or fieldbus protocols, enabling seamless integration with higher-level control systems, human-machine interfaces (HMIs), or other peripheral devices. The controller’s ability to efficiently exchange data and commands with other system components allows for coordinated and synchronized operation, enhancing the overall performance and functionality of the servo motor system.

In summary, the controller plays a vital role in the overall performance of a servo motor system. It enables precise motion control, utilizes feedback for closed-loop control, implements PID control algorithms, plans complex trajectories, monitors system parameters, and facilitates communication and integration. The controller’s capabilities and effectiveness directly impact the motor’s performance in terms of accuracy, responsiveness, stability, and overall system efficiency.

servo motor

How does the accuracy of a servo motor impact the precision of a system it operates in?

The accuracy of a servo motor has a significant impact on the precision of the system in which it operates. Here’s how the accuracy of a servo motor influences the precision of the system:

1. Positioning Control:

The accuracy of a servo motor directly affects the precision of positioning control in a system. A servo motor with high accuracy can accurately and consistently reach and maintain the desired position. This precision in positioning control is crucial in applications where precise movements, such as in robotics or manufacturing processes, are required. If the servo motor lacks accuracy, it may introduce position errors, leading to reduced precision in the system’s overall operation.

2. Repeatability:

Repeatability refers to the ability of a system to consistently achieve the same position or motion repeatedly. The accuracy of a servo motor plays a vital role in achieving high repeatability. A servo motor with high accuracy will consistently return to the same position when commanded to do so. This level of repeatability is essential in applications where consistent and precise movements are necessary, such as in assembly lines or pick-and-place operations. A lack of accuracy in the servo motor can result in variations in position from one cycle to another, reducing the overall precision of the system.

3. Error Compensation:

The accuracy of a servo motor is crucial for error compensation in a system. In many applications, external factors, such as variations in load or environmental conditions, can introduce errors in the system’s operation. An accurate servo motor can help compensate for these errors by precisely adjusting its position or motion based on feedback from sensors. This error compensation capability contributes to maintaining the precision of the system, as the servo motor can continuously adjust to minimize any deviations from the desired position or trajectory.

4. System Stability:

The accuracy of the servo motor also impacts the stability of the system. A servo motor with high accuracy can achieve stable movements and maintain control over the system’s dynamics. It can respond accurately to control signals, preventing overshoot, oscillations, or erratic behaviors that can degrade system precision. On the other hand, a servo motor with lower accuracy may introduce instability or erratic movements, compromising the overall precision of the system.

5. System Calibration and Calibration:

An accurate servo motor simplifies the calibration and fine-tuning process of a system. When a system requires calibration, an accurate servo motor provides a reliable reference point for adjustments. The precise and consistent movements of the servo motor make it easier to calibrate other components or subsystems in the system, ensuring that the entire system operates with the desired precision. If the servo motor lacks accuracy, it can be challenging to calibrate the system effectively, resulting in reduced precision in the system’s operation.

In summary, the accuracy of a servo motor has a direct impact on the precision of the system it operates in. An accurate servo motor enables precise positioning control, high repeatability, effective error compensation, system stability, and simplified calibration processes. These factors collectively contribute to achieving the desired precision in the system’s operation. Therefore, selecting a servo motor with the appropriate level of accuracy is crucial for ensuring the overall precision and performance of the system.

servo motor

How does feedback control work in a servo motor system?

In a servo motor system, feedback control plays a crucial role in achieving precise control over the motor’s position, speed, and acceleration. The feedback control loop consists of several components that work together to continuously monitor and adjust the motor’s behavior based on the desired and actual position information. Here’s an overview of how feedback control works in a servo motor system:

1. Position Reference:

The servo motor system starts with a position reference or a desired position. This can be specified by a user or a control system, depending on the application requirements. The position reference represents the target position that the servo motor needs to reach and maintain.

2. Feedback Sensor:

A feedback sensor, such as an encoder or resolver, is attached to the servo motor’s shaft. The purpose of the feedback sensor is to continuously measure the motor’s actual position and provide feedback to the control system. The sensor generates signals that indicate the motor’s current position, allowing the control system to compare it with the desired position.

3. Control System:

The control system receives the position reference and the feedback signals from the sensor. It processes this information to determine the motor’s current position error, which is the difference between the desired position and the actual position. The control system calculates the required adjustments to minimize this position error and bring the motor closer to the desired position.

4. Controller:

The controller is a key component of the feedback control loop. It receives the position error from the control system and generates control signals that govern the motor’s behavior. The controller adjusts the motor’s inputs, such as voltage or current, based on the position error and control algorithm. The control algorithm can be implemented using various techniques, such as proportional-integral-derivative (PID) control, which adjusts the motor’s inputs based on the current error, the integral of past errors, and the rate of change of errors.

5. Motor Drive:

The control signals generated by the controller are sent to the motor drive unit, which amplifies and converts these signals into appropriate voltage or current levels. The motor drive unit provides the necessary power and control signals to the servo motor to initiate the desired motion. The drive unit adjusts the motor’s inputs based on the control signals to achieve the desired position, speed, and acceleration specified by the control system.

6. Motor Response:

As the motor receives the adjusted inputs from the motor drive, it starts to rotate and move towards the desired position. The motor’s response is continually monitored by the feedback sensor, which measures the actual position in real-time.

7. Feedback Comparison:

The feedback sensor compares the actual position with the desired position. If there is any deviation, the sensor generates feedback signals reflecting the discrepancy between the desired and actual positions. These signals are fed back to the control system, allowing it to recalculate the position error and generate updated control signals to further adjust the motor’s behavior.

This feedback loop continues to operate in a continuous cycle, with the control system adjusting the motor’s inputs based on the feedback information. As a result, the servo motor can accurately track and maintain the desired position, compensating for any disturbances or variations that may occur during operation.

In summary, feedback control in a servo motor system involves continuously comparing the desired position with the actual position using a feedback sensor. The control system processes this position error and generates control signals, which are converted and amplified by the motor drive unit to drive the motor. The motor’s response is monitored by the feedback sensor, and any discrepancies are fed back to the control system, enabling it to make further adjustments. This closed-loop control mechanism ensures precise positioning and accurate control of the servo motor.

China Good quality Tinsmith High Torque BLDC Robot Arm Joint Module Electric Brushless Cobot Actuator Hollow Shaft Frameless Thin Waterproof DC Servo Robotic Harmonic Drive Motor   with Hot selling	China Good quality Tinsmith High Torque BLDC Robot Arm Joint Module Electric Brushless Cobot Actuator Hollow Shaft Frameless Thin Waterproof DC Servo Robotic Harmonic Drive Motor   with Hot selling
editor by CX 2023-10-23

China Good quality Compact Size High Torque L Type Hollow Shaft Brushless DC Gear Motor vacuum pump booster

Product Description

TaiBang Motor Industry Group Co., Ltd.

The main products is induction motor, reversible motor, DC brush gear motor, DC brushless gear motor, CH/CV big gear motors, Planetary gear motor ,Worm gear motor etc, which used widely in various fields of manufacturing pipelining, transportation, food, medicine, printing, fabric, packing, office, apparatus, entertainment etc, and is the preferred and matched product for automatic machine. 

Brushless DC motor is made up of motor and driver,which is a kind of typical product of mechanical and electrical integration.
It is highly regarded by market as its small volume,low noise,high efficiency,wide range of speed control and steady working state with less inaccuracy.The product is widely used in transmission equipment,textile machinery and medical devices,etc.

DC brushless gear motors are designed to be a high torque and free maintenance DC motor solution.

It is DC brushless motor combined with parallel shaft gearbox,hollow shaft flat gearbox,right angle hollow shaft & CHINAMFG shaft gearbox,and worm gearbox.

Flat L type hollow shaft BLDC brushless geared reduction motor 200w (DC24v,36v,48v power supply)
200w brushless DC motor in 90mm frame size,coupled with a flat L type hollow shaft gear reducer,which are commonly used in
automation equippment where are lmited space and high torque output required.

Frame size from 60mm to 104mm.Gear reduction ratio range from 3K to 200K.Rated voltage from 12v to 48v.It is highly regarded
by market as its compact size,low noise,high efficiency,high torque,wide range of speed control and steady working state with less 
inaccuracy.The BLDC gear motor is widely used in transmission equipment,textile machinery and medical devices,etc.

We do also produce DC brushed gear motor.Micro DC brushed geared motor is ideal for low speed applications that requires for high starting torque.
The DC motor and gearbox assembly,will provide greater efficiency in an economical solution.

The brushed motor eansure high efficiency transmission,reliable operation and low cost.
It is widely applied in agricultural machinery,electric doors, etc. 

Also micro AC gear motor,small AC geared motor and roller drum motor are available.

AC micro geared motor can be directly connected to single phase or 3 phase power supply to operate.
There are induction motors,reversible motors,magnetic brake motors,variable speed motors,torque motors,and other specification.
Geared motor can be matched with gearbox and speed regulation controller.

Motor rated power ranges from 4W to 200W.And are available as a round shaft motor only or with a parallel gearhead or right angle gearhead.
The gear motor compact size,low noise,high reliability,long lifespan and easy installation.
It can be used in continuous operation.And it has been widely used in various applications,such as woodworking industry,textile industry,
food industry,packaging industry,and industrial automation machinery,etc.

The drum motor is a totally enclosed electric driven pulley and replaces the traditional external gear-motors and gear speed reducer.

As a self-contained component without protruding parts and with fixed external shafts,drum motors are probably the safest drive unit for material handing equipment,
and much cleaner in food processing as its totally enclosed sealed design.It reduce the risk of food contamination.

In additional,because the motor,planetary gearbox and bearings all are enclosed in the drum shell,the drum motor takes up much less space.

GPG roller drum motors can be found primarily in airport logistics,in the parcel,postal and courier sector,in distribution,in the food industry,and in various other industries.

Both DC brushless drum motor and AC drum motor are available.

The horizontal gear motor is convenient to be fixed on the base of the machines for transmission.
And vertical gear motor can be easy installed to the machines directly through flange.

Our this small(medium)gear motors are low noise,low temperature rise and long lifespan.
All gear boxes are inspected strictly to ensure no oil leakage and reliable operation.

Features

Special oil leak-proof design,and also no need to change grease as hight quality grease used

High precision machined helical gear assure of low noise

Mainly applied in food machines,packaging machines,CNC machines,animal husbandry,conveyor system and other automatic industries.

High precision and low backlash planetary gearheads & gearboxes 

High precision planetary gearheads are designed to meet the requirements of high performance servo system and provide
a combination of high torque and low backlash necessary for high speed positioning

It is suitable for a wide range of servo motors.

GPG planetary gearhead(gearbox) are your ideal choice in robotics,industrial automation,laser cutting,machine tool,and test & measurement machinery,etc.

Motor Model Instruction

G5BLD200-24GN-18S

G 5 BLD 200 24 GN 18S
Factory Code Frame Size Motor Type Output Power Power Voltage Motor Shaft Type Motor Speed
GPG Motor Mounting Flange:
60mm,70mm,80mm,
90mm,100mm,ø45,ø60
BLD:Brushless Motor With Square Gearhead

BLDP:Brushless Motor With Planetary Gearhead
 

10:10W
15:15W
25:25W
40:40W
60:60W
90:90W
200:200W
400:400W
24:DC24V
36:DC36V
48:DC48V
110:DC110V
220:DC220V
GN:General Bevel Gear

GU:Reinforced Bevel Gear

A1:Milling Keyway

A:Flat type

15S:1500RPM
18S:1800RPM
25S:2500RPM
30S:3000RPM

Motor Performance Parameter

Model Voltage Rated Power No-load Parameter Load Parameter Motor Life
(Hours)
Motor Weight(kg)
Rotation Speed Current(A) Rotation Speed Torque(N.m) Current(A)
G5BLD200-24A(GN) 24V 200W 3500RPM Max 0.8 3000RPM 0.64 10.5 >5000 1.6
G5BLD200-36A(GN) 36V 3400RPM Max 0.65 3000RPM 0.64 7.0
G5BLD200-48A(GN) 48V 3300RPM Max 0.45 3000RPM 0.64 5.2
G5BLD120-24A(GN) 24V 120W 2300RPM Max 0.65 1800RPM 0.38 7.1 1.4
G5BLD120-36A(GN) 36V 2200RPM Max 0.45 1800RPM 0.38 5.2
G5BLD120-48A(GN) 48V 2200RPM Max 0.3 1800RPM 0.38 4.1

Gearhead Model Instruction

5GFS-50K

2 GFS 50 K
Dimension Gear Type Reduction Ratio Bearing type
2:60mm
3:70mm
4:80mm
5:90mm
6:104mm
GN:General Bevel Gear

GU:Reinforced Bevel Gear

GFS:L Type Hollow Shaft Gear

50:1 Ball Bearinig

 

Should you have any questions,please feel free to contact Ms Susan Liu directly.
Let’s talk in detail.

FAQ

Q: How about your company?
A:We are gear motor factory located in HangZhou city of China.We start from 1995.We have more than 1200 workers.Main products is AC micro gear motor 6W to 250W, AC small gear motor 100W to 3700W,brush DC motor 10W to 400W,brushless motor 10W to 750W,drum motor 60W to 3700W,planetary gearbox ,worm gearbox etc .
Q: How to choose a suitable motor?
A:If you have gear motor pictures or drawings to show us, or you tell us detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc.Please do not hesitate to let us know, then we can suggest suitable motor per your request .
Q: Can you make the gear motor with customize specifications ?
Yes, we can customize per your request for the voltage, speed, torque and shaft size and shape. If you need additional wires or cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.
Q: What’s your lead time?
A: Usually our regular standard product will need 10-15days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
Q: What is your MOQ?
A: If delivery by sea ,the minimum order is 100 pieces, if deliver by express, there is no limit.
Q: Do you have the item in stock?
A: I am sorry we do not have the item in stock, All products are made with orders.
Q: How to contact us ?
A: You can send us enquiry . 

 

Application: Universal, Industrial
Operating Speed: Adjust Speed
Excitation Mode: Excited
Samples:
US$ 75/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

China Good quality Compact Size High Torque L Type Hollow Shaft Brushless DC Gear Motor   vacuum pump booster	China Good quality Compact Size High Torque L Type Hollow Shaft Brushless DC Gear Motor   vacuum pump booster
editor by CX 2023-10-19