Tag Archives: electric ac motor

China Best Sales Air Cooled IP54 3 Phase Servo Electric Synchronous Motor vacuum pump ac

Product Description

Air Cooled IP54 3 Phase Servo Electric Synchronous Motor

Product Feature
1.Suitable for the 7159rpm high speed
2.High power & high torque
3.High efficiency
4.Small size
5.Low noise low vibration
6.Patented cooling structure
7.Easy maintenance and long life time
8.Durable, reliable

Specifications
Model type: SRPM290M8F75
Voltage: 380V AC
Rated Power: 75KW
Rate Torque : 100 N.m
Working speed: 7159rpm
Efficiency: 95.7%
Isolation: H/F
Water/dust Proof: IP54
Cooling Method: Air

Application
High-speed Compressors,Fans,Pumps

Other motors you will be interested in

Motor type Voltage
(V AC)
Rated power
(kW)
Rated torque (N.m) Rated speed
(rpm)
Efficiency
(%)
Service Factor Insulation Ingress protection Pole Number Weight
(kg)
Cooling Method Position Signal Installation Method
SRPM151M8XW11 380 11 11 9600 96 S1 H/F IP67 8 10 Oil circulation Resolver B35
SRPM205M8XO45 380 45 36 12000 96.3 S1 H/F IP67 8 35 Oil circulation Resolver B35
SRPM205M8XO55 380 55 43.8 12000 96.3 S1 H/F IP67 8 38 Oil circulation Resolver B35
SRPM205M8XO75 380 75 59.7 12000 96.5 S1 H/F IP67 8 43 Oil circulation Resolver B35
SRPM205M8XO90 380 90 71.6 12000 96.5 S1 H/F IP67 8 47 Oil circulation Resolver B35
SRPM205M8XO110 380 110 87.6 12000 96.5 S1 H/F IP67 8 75 Oil circulation Resolver B35
SRPM205M8XO132 380 132 105 12000 96.5 S1 H/F IP67 8 80 Oil circulation Resolver B35
SRPM205M8XO160 380 160 127.3 12000 96.5 S1 H/F IP67 8 87 Oil circulation Resolver B35
SRPM205M8XO185 380 185 147.2 12000 96.5 S1 H/F IP67 8 95 Oil circulation Resolver B35

FAQ
1. Can performanent magnet synchronous motor be used as generator? 

No. Permanent magnet synchronous motor is absolutely different from generator. It is only ac motor that outputs speed and torque to drive electric devices, but not power supply. 
 
2. Why can not directly use 3 phase ac supply voltage to start permanent magnet synchronous motor? 
Becuase rotor is with big innertia, and magetic files spins so fast that static rotor has no way to spin with magetic filed. 
 
3. Any special technical request on this motor’s VFD driver? And Do you have such driver? 
Permanent magnet synchronous motor’s driver should be vector control VFD with special inner software, such as CHINAMFG 6SE70 series, Yakawa CR5 series, ABB ACS800 series, CHINAMFG A740 series, B&R P84 and P74 series, etc.. Yes, our MH300 series VFD matches with this motor. 
 
4. Is there any protective measures to defend permanent magnet rotor from failure? 
Yes, each permanent magnet rotor passes corrossion resistance, consistency, high temperature demagnetization test, linear demagnetization test, etc. Its demagnetization index is within 2%. But if working environment is serious oxiditive corrosion, kindly advise for higher protection level. 
 
5. Where is this permanent magnet synchronous motor normally used to? 
This permanent magnet synchronous motor is normally used to variable frequency speed situation.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Power Tools, Fans, Pumps, Compressors
Operating Speed: High Speed
Operation Mode: Electric Motor
Magnetic Structure: Permanent Magnet
Function: Driving
Structure: Rotating Pole Type (Armature Fixed)
Customization:
Available

|

servo motor

How are servo motors used in CNC machines and other precision machining equipment?

Servo motors play a crucial role in CNC (Computer Numerical Control) machines and other precision machining equipment. They provide precise and dynamic control over the movement of various axes, enabling high-accuracy positioning, rapid speed changes, and smooth motion profiles. Here’s a detailed explanation of how servo motors are used in CNC machines and precision machining equipment:

1. Axis Control:

CNC machines typically have multiple axes, such as X, Y, and Z for linear movements, as well as rotary axes for rotational movements. Servo motors are employed to drive each axis, converting electrical signals from the CNC controller into mechanical motion. The position, velocity, and acceleration of the servo motors are precisely controlled to achieve accurate and repeatable positioning of the machine’s tool or workpiece.

2. Feedback and Closed-Loop Control:

Servo motors in CNC machines are equipped with feedback devices, such as encoders or resolvers, to provide real-time information about the motor’s actual position. This feedback is used in a closed-loop control system, where the CNC controller continuously compares the desired position with the actual position and adjusts the motor’s control signals accordingly. This closed-loop control ensures accurate positioning and compensates for any errors, such as mechanical backlash or load variations.

3. Rapid and Precise Speed Changes:

Servo motors offer excellent dynamic response, allowing CNC machines to achieve rapid and precise speed changes during machining operations. By adjusting the control signals to the servo motors, the CNC controller can smoothly accelerate or decelerate the machine’s axes, resulting in efficient machining processes and reduced cycle times.

4. Contouring and Path Tracing:

CNC machines often perform complex machining tasks, such as contouring or following intricate paths. Servo motors enable precise path tracing by accurately controlling the position and velocity of the machine’s tool along the programmed path. This capability is crucial for producing intricate shapes, smooth curves, and intricate details with high precision.

5. Spindle Control:

In addition to axis control, servo motors are also used to control the spindle in CNC machines. The spindle motor, typically a servo motor, rotates the cutting tool or workpiece at the desired speed. Servo control ensures precise speed and torque control, allowing for optimal cutting conditions and surface finish quality.

6. Tool Changers and Automatic Tool Compensation:

CNC machines often feature automatic tool changers to switch between different cutting tools during machining operations. Servo motors are utilized to precisely position the tool changer mechanism, enabling quick and accurate tool changes. Additionally, servo motors can be used for automatic tool compensation, adjusting the tool’s position or orientation to compensate for wear, tool length variations, or tool offsets.

7. Synchronized Motion and Multi-Axis Coordination:

Servo motors enable synchronized motion and coordination between multiple axes in CNC machines. By precisely controlling the servo motors on different axes, complex machining operations involving simultaneous movements can be achieved. This capability is vital for tasks such as 3D contouring, thread cutting, and multi-axis machining.

In summary, servo motors are integral components of CNC machines and precision machining equipment. They provide accurate and dynamic control over the machine’s axes, enabling high-precision positioning, rapid speed changes, contouring, spindle control, tool changers, and multi-axis coordination. The combination of servo motor technology and CNC control systems allows for precise, efficient, and versatile machining operations in various industries.

servo motor

Are there different types of servo motors, and how do they differ?

Yes, there are different types of servo motors available, each with its own characteristics and applications. The variations among servo motors can be attributed to factors such as construction, control mechanisms, power requirements, and performance specifications. Let’s explore some of the common types of servo motors and how they differ:

1. DC Servo Motors:

DC servo motors are widely used in various applications. They consist of a DC motor combined with a feedback control system. The control system typically includes a position or velocity feedback sensor, such as an encoder or a resolver. DC servo motors offer good speed and torque control and are often employed in robotics, automation, and hobbyist projects. They can be operated with a separate motor driver or integrated into servo motor units with built-in control electronics.

2. AC Servo Motors:

AC servo motors are designed for high-performance applications that require precise control and fast response times. They are typically three-phase motors and are driven by sinusoidal AC waveforms. AC servo motors often incorporate advanced control algorithms and feedback systems to achieve accurate position, velocity, and torque control. These motors are commonly used in industrial automation, CNC machines, robotics, and other applications that demand high precision and dynamic performance.

3. Brushed Servo Motors:

Brushed servo motors feature a traditional brushed DC motor design. They consist of a rotor with a commutator and carbon brushes that make physical contact with the commutator. The brushes provide electrical connections, allowing the motor’s magnetic field to interact with the rotor’s windings. Brushed servo motors are known for their simplicity and cost-effectiveness. However, they may require more maintenance due to brush wear, and they generally have lower efficiency and shorter lifespan compared to brushless servo motors.

4. Brushless Servo Motors:

Brushless servo motors, also known as brushless DC (BLDC) motors, offer several advantages over brushed motors. They eliminate the need for brushes and commutators, resulting in improved reliability, higher efficiency, and longer lifespan. Brushless servo motors rely on electronic commutation, typically using Hall effect sensors or encoder feedback for accurate rotor position detection. These motors are widely used in robotics, industrial automation, aerospace, and other applications that require high-performance motion control with minimal maintenance.

5. Linear Servo Motors:

Linear servo motors are designed to provide linear motion instead of rotational motion. They consist of a primary part (stator) and a secondary part (slider or forcer) that interact magnetically to generate linear motion. Linear servo motors offer advantages such as high speed, high acceleration, and precise positioning along a linear axis. They find applications in various industries, including semiconductor manufacturing, packaging, printing, and machine tools.

6. Micro Servo Motors:

Micro servo motors are small-sized servo motors often used in applications with limited space and low power requirements. They are commonly found in hobbyist projects, model airplanes, remote-controlled vehicles, and small robotic systems. Micro servo motors are lightweight, compact, and offer reasonable precision and control for their size.

These are some of the different types of servo motors available, each catering to specific applications and requirements. The choice of servo motor type depends on factors such as the desired performance, accuracy, power requirements, environmental conditions, and cost considerations. Understanding the differences between servo motor types is essential for selecting the most suitable motor for a particular application.

servo motor

Can you explain the difference between a servo motor and a regular electric motor?

A servo motor and a regular electric motor are both types of electric motors, but they have distinct differences in terms of design, control, and functionality.

A regular electric motor, also known as an induction motor or a DC motor, is designed to convert electrical energy into mechanical energy. It consists of a rotor, which rotates, and a stator, which surrounds the rotor and generates a rotating magnetic field. The rotor is connected to an output shaft, and when current flows through the motor’s windings, it creates a magnetic field that interacts with the stator’s magnetic field, resulting in rotational motion.

On the other hand, a servo motor is a more specialized type of electric motor that incorporates additional components for precise control of position, speed, and acceleration. It consists of a regular electric motor, a sensor or encoder, and a feedback control system. The sensor or encoder provides feedback on the motor’s current position, and this information is used by the control system to adjust the motor’s behavior.

The key difference between a servo motor and a regular electric motor lies in their control mechanisms. A regular electric motor typically operates at a fixed speed based on the voltage and frequency of the power supply. In contrast, a servo motor can be controlled to rotate to a specific angle or position and maintain that position accurately. The control system continuously monitors the motor’s actual position through the feedback sensor and adjusts the motor’s operation to achieve the desired position or follow a specific trajectory.

Another distinction is the torque output of the motors. Regular electric motors generally provide high torque at low speeds and lower torque at higher speeds. In contrast, servo motors are designed to deliver high torque at both low and high speeds, which makes them suitable for applications that require precise and dynamic motion control.

Furthermore, servo motors often have a more compact and lightweight design compared to regular electric motors. They are commonly used in applications where precise positioning, speed control, and responsiveness are critical, such as robotics, CNC machines, automation systems, and remote-controlled vehicles.

In summary, while both servo motors and regular electric motors are used to convert electrical energy into mechanical energy, servo motors offer enhanced control capabilities, precise positioning, and high torque at various speeds, making them well-suited for applications that require accurate and dynamic motion control.

China Best Sales Air Cooled IP54 3 Phase Servo Electric Synchronous Motor   vacuum pump acChina Best Sales Air Cooled IP54 3 Phase Servo Electric Synchronous Motor   vacuum pump ac
editor by CX 2024-02-19

China Hot selling AC 0.12kw-315kw Y2 Series Industrial Electric Motor for Pump Fans/Gear Transmission with Good quality

Product Description

 

PRODUCT OVERVIEW
  Applications:General purpose including cutting machines,
pumps,fans,conveyors,machines tools of farm duty and food process.
  Features :High efficiency and energy saving,low noise and little vibration.
  Insulation class :F
  Protection class:IP54 or IP55
CONDITIONS OF USE
  The altitude not exceeding 1000m above sea level.The ambient temperature subject to seasonal variations but not exceeding +40ºC and not less than -15°C.

 

Product Parameters

Packaging & Shipping

 

1) Packing Details
Packed in nylon firstly, then carton, and then reinforced with wooden case for outer packing.Or according to client’s requirement.

2) Shipping Details
Samples will be shipped within 10 days.
Batch order leading time according to the actual situation.

Company Profile

   ZHangZhoug CHINAMFG Motor Co., Ltd,located in Zeguo Town,HangZhou,HangZhou City,China,enjoys convenient land, sea and air transportation network.
  We are specialized in all kinds of small and middle-sized electric motors.our main products include electric motors of Y series,Y2/YE2 series,YS/MS series of Three Phase Asynchronous motor;YC series,YL series,MY/ML series,JY series of Single Phase motors etc.They are widely used in machine tool, fans, pumps, compressors, packaging machinery, mining machinery, construction machinery, food machinery and other mechanical transmission device.
  We have obtained ISO90001-2008 quality certificate, CE certificate and CCC certificate.Our products are widely exported to over 50 countries and regions,such as east Europe,Southeast Asia,South America,Middle East,Africa etc.Meanwhile,we have kept well touch with many trading companies at home and abroad for cooperation relationship.
  “Reliable quality, Excellent service, Reasonable price, Timely delivery” is our company persistent pursuit.Looking CHINAMFG to be your long term business partner.

Detailed Photos

FAQ

Q:Why choose us?
A:professional electric motor manufacturer for 10 years;
   good quality material and advanced test machine

Q:What is your MOQ?
A:10 pcs is ok for each model.At first time,trial order is okay.

Q:What about your warranty?
A: 1 year,except man-made destroyed.

Q: how about your payment way ?
A: 30% T/T in advance,70% balance on sight of BL copy by T/T or irrevocable L/C.

Q:Can you make OEM/ODM order?
A:Yes,we have rich experience on OEM/ODM order. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Low Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

What types of feedback mechanisms are commonly integrated into gear motors for control?

Gear motors often incorporate feedback mechanisms to provide control and improve their performance. These feedback mechanisms enable the motor to monitor and adjust its operation based on various parameters. Here are some commonly integrated feedback mechanisms in gear motors:

1. Encoder Feedback:

An encoder is a device that provides position and speed feedback by converting the motor’s mechanical motion into electrical signals. Encoders commonly used in gear motors include:

  • Incremental Encoders: These encoders provide information about the motor’s shaft position and speed relative to a reference point. They generate pulses as the motor rotates, allowing precise measurement of position and speed changes.
  • Absolute Encoders: Absolute encoders provide the precise position of the motor’s shaft within a full revolution. They do not require a reference point and provide accurate feedback even after power loss or motor restart.

2. Hall Effect Sensors:

Hall effect sensors use the principle of the Hall effect to detect the presence and strength of a magnetic field. They are commonly used in gear motors for speed and position sensing. Hall effect sensors provide feedback by detecting changes in the motor’s magnetic field and converting them into electrical signals.

3. Current Sensors:

Current sensors monitor the electrical current flowing through the motor’s windings. By measuring the current, these sensors provide feedback regarding the motor’s torque, load conditions, and power consumption. Current sensors are essential for motor control strategies such as current limiting, overcurrent protection, and closed-loop control.

4. Temperature Sensors:

Temperature sensors are integrated into gear motors to monitor the motor’s temperature. They provide feedback on the motor’s thermal conditions, allowing the control system to adjust the motor’s operation to prevent overheating. Temperature sensors are crucial for ensuring the motor’s reliability and preventing damage due to excessive heat.

5. Hall Effect Limit Switches:

Hall effect limit switches are used to detect the presence or absence of a magnetic field within a specific range. They are commonly employed as end-of-travel or limit switches in gear motors. Hall effect limit switches provide feedback to the control system, indicating when the motor has reached a specific position or when it has moved beyond the allowed range.

6. Resolver Feedback:

A resolver is an electromagnetic device used to determine the position and speed of a rotating shaft. It provides feedback by generating sine and cosine signals that correspond to the shaft’s angular position. Resolver feedback is commonly used in high-performance gear motors requiring accurate position and speed control.

These feedback mechanisms, when integrated into gear motors, enable precise control, monitoring, and adjustment of various motor parameters. By utilizing feedback signals from encoders, Hall effect sensors, current sensors, temperature sensors, limit switches, or resolvers, the control system can optimize the motor’s performance, ensure accurate positioning, maintain speed control, and protect the motor from excessive loads or overheating.

gear motor

Can gear motors be used for precise positioning, and if so, what features enable this?

Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

1. Gear Reduction:

One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

2. High Resolution Encoders:

Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

3. Closed-Loop Control:

Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

4. Stepper Motors:

Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

5. Servo Motors:

Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

6. Motion Control Algorithms:

Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

gear motor

In which industries are gear motors commonly used, and what are their primary applications?

Gear motors find widespread use in various industries due to their versatility, reliability, and ability to provide controlled mechanical power. They are employed in a wide range of applications that require precise power transmission and speed control. Here’s a detailed explanation of the industries where gear motors are commonly used and their primary applications:

1. Robotics and Automation:

Gear motors play a crucial role in robotics and automation industries. They are used in robotic arms, conveyor systems, automated assembly lines, and other robotic applications. Gear motors provide the required torque, speed control, and directional control necessary for the precise movements and operations of robots. They enable accurate positioning, gripping, and manipulation tasks in industrial and commercial automation settings.

2. Automotive Industry:

The automotive industry extensively utilizes gear motors in various applications. They are used in power windows, windshield wipers, HVAC systems, seat adjustment mechanisms, and many other automotive components. Gear motors provide the necessary torque and speed control for these systems, enabling smooth and efficient operation. Additionally, gear motors are also utilized in electric and hybrid vehicles for powertrain applications.

3. Manufacturing and Machinery:

Gear motors find wide application in the manufacturing and machinery sector. They are used in conveyor belts, packaging equipment, material handling systems, industrial mixers, and other machinery. Gear motors provide reliable power transmission, precise speed control, and torque amplification, ensuring efficient and synchronized operation of various manufacturing processes and machinery.

4. HVAC and Building Systems:

In heating, ventilation, and air conditioning (HVAC) systems, gear motors are commonly used in damper actuators, control valves, and fan systems. They enable precise control of airflow, temperature, and pressure, contributing to energy efficiency and comfort in buildings. Gear motors also find applications in automatic doors, blinds, and gate systems, providing reliable and controlled movement.

5. Marine and Offshore Industry:

Gear motors are extensively used in the marine and offshore industry, particularly in propulsion systems, winches, and cranes. They provide the required torque and speed control for various marine operations, including steering, anchor handling, cargo handling, and positioning equipment. Gear motors in marine applications are designed to withstand harsh environments and provide reliable performance under demanding conditions.

6. Renewable Energy Systems:

The renewable energy sector, including wind turbines and solar tracking systems, relies on gear motors for efficient power generation. Gear motors are used to adjust the rotor angle and position in wind turbines, optimizing their performance in different wind conditions. In solar tracking systems, gear motors enable the precise movement and alignment of solar panels to maximize sunlight capture and energy production.

7. Medical and Healthcare:

Gear motors have applications in the medical and healthcare industry, including in medical equipment, laboratory devices, and patient care systems. They are used in devices such as infusion pumps, ventilators, surgical robots, and diagnostic equipment. Gear motors provide precise control and smooth operation, ensuring accurate dosing, controlled movements, and reliable functionality in critical medical applications.

These are just a few examples of the industries where gear motors are commonly used. Their versatility and ability to provide controlled mechanical power make them indispensable in numerous applications requiring torque amplification, speed control, directional control, and load distribution. The reliable and efficient power transmission offered by gear motors contributes to the smooth and precise operation of machinery and systems in various industries.

China Hot selling AC 0.12kw-315kw Y2 Series Industrial Electric Motor for Pump Fans/Gear Transmission   with Good quality China Hot selling AC 0.12kw-315kw Y2 Series Industrial Electric Motor for Pump Fans/Gear Transmission   with Good quality
editor by CX 2024-02-15

China Hot selling Full Series NEMA 11 14 17 23 24 34 42 Outboard Boat Servo DC Electric Hybrid Micro Gear Stepper Motor/Step/Stepping Motor with Reducer, Encoder vacuum pump ac system

Product Description

57 Closed-loop Stepper Motor

  We are a company specializing in the R&D, production and sales of brushless motors, stepper motors, DC motors.  Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

Product Description

57 Closed-loop Stepper Motor:

Projects Specifications
Temperature Rise under 80K
Resistance Accuracy ±10%
Inductance Accuracy ±20%
Ambient Temperature Range -10~ + 50°C
Ambient Humidity Range 20%RH – 90%RH
Insulation Resistance 100MΩMin.@500VDC
Insulation Class Class B 130°
Step Angle Accuracy ±5%
Shaft Radial Play 0.06Max.(450g-load)
Shaft Axial Runout 0.08Max.(450g-load)

57 Closed-loop Stepper Motor  Parameters:

Model Current Resistance Inductance Rotational Inertia Holding torque Body Length Weight
A Ω mH g.cm2 N.M mm kg
57BHS78-D0821 3 0.7 3.6 200 1.2 78 0.9
57BHS98-D0821 4 1 4.4 480 2 98 1.35
57BHS122-D0821 4 1.2 1.1 550 2.8 122 1.85
57BHS134-D0821 4 1.5 2.8 600 3.2 134 1.95

Note: The above are standard parameters. Motor can be customized, brake ready, can be equipped with reducer, encoder and other devices.
 

Detailed Photos

57 Closed-loop Stepper Motor Photos:

Our Service:
1). General Service:

Quick Reply

All enquiry or email be replied in 12 hours, no delay for your business.

Professional Team

Questions about products will be replied professionally, exactly, best advice to you.

Short Lead time

Sample or small order sent in 7-15 days, bulk or customized order about 30 days.

Payment Choice

T/T, Western Union,, L/C, etc, easy for your business.

Before shipment

Take photos, send to customers for confirmation. Only confirmed, can be shipped out.

Language Choice

Besides English, you can use your own language by email, then we can translate it.

2). Customization Service:

Motor specification(no-load speed , voltage, torque , diameter, noise, life, testing) and shaft length can be tailor-made according to customer’s requirements.

Other Product Parameters

20 Series screw stepper Motor 1.8°(8H series) 

Model Current Resistance Inductance Rotational Inertia Holding torque| Body Length Weight
  A o mH g.cm2 N.M mm kg
20HS28-0504TS 0.5 14.3 8.o 1.6 0.018 28 0.05
2oHs30-0504Ts 0.5 11.5 1.7 1.8 0.02 30 0.06
20Hs33-0604TS 0.6 6.5 2.2 20 0.571 33 0.07
20Hs38-0604TS 0.6 10 5.5 3.2 0.044 38 0.08

28 Series screw stepper Motor 1.8°(11H series) 

Model Current Resistance Inductance Rotational Inertia Holding torque| Body Length Weight
  A o mH g.cm2 N.M mm kg
28HS32-0704Ts 0.7 5.6 3.4 9 o.09 32 0.11
28HS40-1004TS 1.o 4.1 3.1 11 0.13 40 0.13
28HS45-1004TS 1 3.8 3.3 12 0.15 45 0.14
28HS51-1004Ts 1 4.3 3.9 18 0.18 51 0.2

42HS Series step motor/stepping motor/stepper motor 1.8°(17H Series )

Model Current Resistance Inductance Rotational Inertia Holding torque Body Length Weight
  A o mH g.cm2 N.M mm kg
42HS34-1504 1.5 2.1 4.2 35 0.25 34 0.22
42HS40-1704 1.7 1.65 4.o 54 0.45 40 0.28
42HS48-1704 1.7 1.65 4.1 68 0.55 48 0.35
42HS60-1704 1.7 3 6 80 0.7 60 0.48

 42 Series screw stepper Motor 1.8°(17H series)

Model Current Resistance Inductance Rotational Inertia Holding torque| Body Length Weight
  A 2 mH g.cm2 N.M mm kg
42HS34-1504TS 1.5 2.1 4.2 35 0.25 34 0.22
42HS40-1704TS 1.7 1.65 4 54 0.45 40 0.28
42HS48-1704TS 1.7 1.65 4.1 68 0.55 48 0.35
42HS60-1704TS 1.7 3 6 80 0.70 60 0.48

 57 Series Stepper Motor 1.8°(23H series) 

Model Current Resistance Inductance Rotational Inertia Holding torque Body Length Weight
  A o mH g.cm2 N.M mm kg
57HS56-3004 3 0.7 3.6 200 1.2 56 0.7
57Hs76-4004 4 1.0 4.4 480 2 76 1.15
57Hs100-4004 4 1.2 1.1 550 2.8 100 1.65
57HS112-4004 4 1.5 2.8 600 3.2 112 1.75

 86 Series Stepper Motor 1.8°(34H series) 

Model Current Resistance Inductance Rotational Inertia Holding torque| Body Length Weight
  A o mH g.cm2 N.M mm kg
86Hs80-5004 5 0.65 7 1600 4.5 76 2.4
86HS10o-6004 6 0.50 11.6 2200 6.5 100 3.2
86HS118-6004 6 0.60 3.4 3200 8.5 118 4
86HS150-6004 6 0.7 6.3 4800 12 150 5.5

Application Area

Product Recommendation

 

Stepper motor Brushless motor Synchronous motor

 

Company Profile

HangZhou Sino-pan Electric Co., Ltd. is an export-oriented enterprise. Located in Xihu (West Lake) Dis. District, HangZhou City, ZheJiang Province, China. After years of operation, the scale of our enterprise has continued to expand. Gradually grow into a group company. At present, our company mainly produces automotive bulbs (such as halogen bulbs and automotive LED bulbs/as well as household LEDs and commercial LEDs), motors (brushless motors/stepping motors/synchronous motors/asynchronous motors). At the same time, we are also appointed by many clients as purchasing and quality inspection agents in China.

We provide you with high-quality, fast, efficient and inexpensive automotive lighting, motors and auxiliary electrical services. Zhongpan welcomes your patronage with a sHangZhou, and we will provide you with a variety of satisfactory products and a full range of consulting services. We firmly believe that the cooperation with us will be infinitely better! Strive to create a stronger tomorrow for our customers!

 

Packaging & Shipping

 

FAQ

Q1. Can I provide sample orders for your products?
A: Of course, you can check our quality before ordering. If you have any requirements, please contact us.

Q2. What is your delivery time?
A: It depends on the order quantity. Usually, it takes about 3-7 days after receiving the small deposit. Bulk ordering takes 10-20 days.

Q3. What kind of customers and what kind of companies do you work with?
A: We have 20 years of export experience and serve more than 100 customers, such as retailers, wholesalers, and online store owners.

Q4. Is it possible to put our logo on your product or product packaging?
A: Of course, we have a factory, welcome to customize your brand, LOGO, color, product manual, packaging, etc. 

Q5: Can you OEM for me?
A: We accept all OEM orders, just contact us and give me your design. We will provide you with a reasonable price and make samples for you as soon as possible. 

Q6: What are your payment terms?
A: According to T/T, LC AT SIGHT, 30% deposit in advance, and the balance 70% before shipment.

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Machine Tool, Universal
Speed: Variable Speed
Number of Stator: 2 Phase, 3 Phase, 4phase
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

Are there advancements or trends in servo motor technology that users should be aware of?

Yes, there have been significant advancements and emerging trends in servo motor technology that users should be aware of. These developments aim to enhance performance, improve efficiency, and provide new capabilities. Here are some noteworthy advancements and trends in servo motor technology:

1. Higher Power Density:

Advancements in servo motor design and manufacturing techniques have led to higher power densities. This means that modern servo motors can deliver more power in a smaller and lighter package. Higher power density allows for more compact and efficient machine designs, particularly in applications with limited space or weight restrictions.

2. Improved Efficiency:

Efficiency is a crucial aspect of servo motor technology. Manufacturers are continuously striving to improve motor efficiency to minimize energy consumption and reduce operating costs. Advanced motor designs, optimized winding configurations, and the use of high-quality materials contribute to higher efficiency levels, resulting in energy savings and lower heat generation.

3. Integration of Electronics and Control:

Integration of electronics and control functions directly into servo motors is becoming increasingly common. This trend eliminates the need for external motor controllers or drives, simplifies wiring and installation, and reduces overall system complexity. Integrated servo motors often include features such as on-board motion control, communication interfaces, and safety features.

4. Digitalization and Connectivity:

Servo motor technology is embracing digitalization and connectivity trends. Many modern servo motors come equipped with digital interfaces, such as Ethernet or fieldbus protocols, enabling seamless integration with industrial communication networks. This connectivity allows for real-time monitoring, diagnostics, and remote control of servo motors, facilitating condition monitoring, predictive maintenance, and system optimization.

5. Advanced Feedback Systems:

Feedback systems play a critical role in servo motor performance. Recent advancements in feedback technology have resulted in more accurate and higher-resolution encoders, resolvers, and sensors. These advanced feedback systems provide precise position and velocity information, enabling improved motion control, better accuracy, and enhanced dynamic response in servo motor applications.

6. Smart and Adaptive Control Algorithms:

Servo motor control algorithms have evolved to include smart and adaptive features. These algorithms can adapt to changing load conditions, compensate for disturbances, and optimize motor performance based on real-time feedback. Smart control algorithms contribute to smoother operation, increased stability, and improved tracking accuracy in various applications.

7. Safety and Functional Safety:

Safety is a paramount concern in industrial automation. Servo motor technology has incorporated safety features and functional safety standards to ensure the protection of personnel and equipment. Safety-rated servo motors often include features such as safe torque off (STO) functionality, safe motion control, and compliance with safety standards like ISO 13849 and IEC 61508.

It’s important for users to stay informed about these advancements and trends in servo motor technology. By understanding the latest developments, users can make informed decisions when selecting and implementing servo motors, leading to improved performance, efficiency, and reliability in their applications.

servo motor

Are there different types of servo motors, and how do they differ?

Yes, there are different types of servo motors available, each with its own characteristics and applications. The variations among servo motors can be attributed to factors such as construction, control mechanisms, power requirements, and performance specifications. Let’s explore some of the common types of servo motors and how they differ:

1. DC Servo Motors:

DC servo motors are widely used in various applications. They consist of a DC motor combined with a feedback control system. The control system typically includes a position or velocity feedback sensor, such as an encoder or a resolver. DC servo motors offer good speed and torque control and are often employed in robotics, automation, and hobbyist projects. They can be operated with a separate motor driver or integrated into servo motor units with built-in control electronics.

2. AC Servo Motors:

AC servo motors are designed for high-performance applications that require precise control and fast response times. They are typically three-phase motors and are driven by sinusoidal AC waveforms. AC servo motors often incorporate advanced control algorithms and feedback systems to achieve accurate position, velocity, and torque control. These motors are commonly used in industrial automation, CNC machines, robotics, and other applications that demand high precision and dynamic performance.

3. Brushed Servo Motors:

Brushed servo motors feature a traditional brushed DC motor design. They consist of a rotor with a commutator and carbon brushes that make physical contact with the commutator. The brushes provide electrical connections, allowing the motor’s magnetic field to interact with the rotor’s windings. Brushed servo motors are known for their simplicity and cost-effectiveness. However, they may require more maintenance due to brush wear, and they generally have lower efficiency and shorter lifespan compared to brushless servo motors.

4. Brushless Servo Motors:

Brushless servo motors, also known as brushless DC (BLDC) motors, offer several advantages over brushed motors. They eliminate the need for brushes and commutators, resulting in improved reliability, higher efficiency, and longer lifespan. Brushless servo motors rely on electronic commutation, typically using Hall effect sensors or encoder feedback for accurate rotor position detection. These motors are widely used in robotics, industrial automation, aerospace, and other applications that require high-performance motion control with minimal maintenance.

5. Linear Servo Motors:

Linear servo motors are designed to provide linear motion instead of rotational motion. They consist of a primary part (stator) and a secondary part (slider or forcer) that interact magnetically to generate linear motion. Linear servo motors offer advantages such as high speed, high acceleration, and precise positioning along a linear axis. They find applications in various industries, including semiconductor manufacturing, packaging, printing, and machine tools.

6. Micro Servo Motors:

Micro servo motors are small-sized servo motors often used in applications with limited space and low power requirements. They are commonly found in hobbyist projects, model airplanes, remote-controlled vehicles, and small robotic systems. Micro servo motors are lightweight, compact, and offer reasonable precision and control for their size.

These are some of the different types of servo motors available, each catering to specific applications and requirements. The choice of servo motor type depends on factors such as the desired performance, accuracy, power requirements, environmental conditions, and cost considerations. Understanding the differences between servo motor types is essential for selecting the most suitable motor for a particular application.

servo motor

Can servo motors be used in robotics, and if so, how are they implemented?

Yes, servo motors are commonly used in robotics due to their precise control capabilities and suitability for a wide range of robotic applications. When implementing servo motors in robotics, several factors need to be considered. Here’s an overview of how servo motors are used and implemented in robotics:

1. Joint Actuation:

Servo motors are often used to actuate the joints of robotic systems. Each joint in a robot typically requires a motor to control its movement. Servo motors provide the necessary torque and angular control to accurately position the joint. They can rotate between specific angles, allowing the robot to achieve the desired configuration and perform precise movements.

2. Position Control:

Servo motors excel at position control, which is essential for robotics applications. They can accurately maintain a specific position and respond quickly to control signals. By incorporating servo motors in robotic joints, precise positioning control can be achieved, enabling the robot to perform tasks with accuracy and repeatability.

3. Closed-Loop Control:

Implementing servo motors in robotics involves utilizing closed-loop control systems. Feedback sensors, such as encoders or resolvers, are attached to the servo motors to provide real-time feedback on the motor’s position. This feedback is used to continuously adjust the motor’s behavior and ensure accurate positioning. Closed-loop control allows the robot to compensate for any errors or disturbances and maintain precise control over its movements.

4. Control Architecture:

In robotics, servo motors are typically controlled using a combination of hardware and software. The control architecture encompasses the control algorithms, microcontrollers or embedded systems, and communication interfaces. The control system receives input signals, such as desired joint positions or trajectories, and generates control signals to drive the servo motors. The control algorithms, such as PID control, are used to calculate the appropriate adjustments based on the feedback information from the sensors.

5. Kinematics and Dynamics:

When implementing servo motors in robotics, the kinematics and dynamics of the robot must be considered. The kinematics deals with the study of the robot’s motion and position, while the dynamics focuses on the forces and torques involved in the robot’s movement. Servo motors need to be properly sized and selected based on the robot’s kinematic and dynamic requirements to ensure optimal performance and stability.

6. Integration and Programming:

Servo motors in robotics need to be integrated into the overall robot system. This involves mechanical mounting and coupling the motors to the robot’s joints, connecting the feedback sensors, and integrating the control system. Additionally, programming or configuring the control software is necessary to define the desired movements and control parameters for the servo motors. This programming can be done using robot-specific programming languages or software frameworks.

By utilizing servo motors in robotics and implementing them effectively, robots can achieve precise and controlled movements. Servo motors enable accurate positioning, fast response times, and closed-loop control, resulting in robots that can perform tasks with high accuracy, repeatability, and versatility. Whether it’s a humanoid robot, industrial manipulator, or collaborative robot (cobot), servo motors play a vital role in their actuation and control.

China Hot selling Full Series NEMA 11 14 17 23 24 34 42 Outboard Boat Servo DC Electric Hybrid Micro Gear Stepper Motor/Step/Stepping Motor with Reducer, Encoder   vacuum pump ac system	China Hot selling Full Series NEMA 11 14 17 23 24 34 42 Outboard Boat Servo DC Electric Hybrid Micro Gear Stepper Motor/Step/Stepping Motor with Reducer, Encoder   vacuum pump ac system
editor by CX 2024-02-15

China best 48V 2000W BLDC Gear Motor for Electric Tricycle, Ebike, Rickshaw, Electric Motorcycle vacuum pump ac system

Product Description

Product Description

Reduction motor data
 

voltage power torque(before reduction)N.m ratio rated speed/ rpm current(48v)A Eff%
48V/60V/72v 1000W 3.9 5.44 3420 27 84
48V/60V/72v 1260W 4.5 5.44 3420 34 84
48V/60V/72v 1550W 6.2 5.44 3420 39 84
48V/60V/72v 2000W 8.2 5.44 3420 55 84

pmsm Motor Data:

power voltage Torque
(N.m)
rated speed
(RPM) 
eco mode
(RPM) 
normal mode
(RPM) 
sport mode
(RPM) 
Efficiency
1500W 48V 12.3  2280 1870 2280 2850 95%
60V 11.1  2850 2350 2850 3680 95%
72V 19.6  3450 2650 3450 4220 95%
2000W 48V 17.2  2000 1900 2330 3100 95%
60V 14.9  2650 2500 2930 3800 95%
72V 30.0  2720 2930 3800 4450 95%
2200W 48V 14.7  2350 2000 2350 2600 95%
60V 13.3  3000 2600 3000 3300 95%
72V 29.8  3500 3100 3500 4000 95%
3000W 48V 20.9  2250 1870 2250 2850 94%
60V 17.8  2850 2350 2850 3350 95%
72V 14.6  3400 2900 3400 3900 95%
4000W 48V 16.5  2300 1900 2300 2600 94%
60V 20.3  2800 2400 2800 3300 96%
72V 19.9  3400 2800 3400 4000 96%
5000W 48V 19.6  2210 1780 2210 2540 94%
60V 22.5  2710 2280 2710 3040 95%
72V 30.2  3400 2820 3400 4571 95%

 

Production Line

 

How important the motor is to the E Vehicle?

Motor is the heart of an electric vehicle, motor’s capacity and efficiency is a great deal, an e-rickshaw uses BLDC motor powered with controller that controls the movement of the motor. Choosing the best motor is critical for any electric vehicle, the capacity of the motor should be enough to generate high enough torque to enhance the user experience without wasting too much energy to ensure longer HangZhouage is delivered by the battery.

Why Choose CHINAMFG DC motor and controller

  1. the newest six-phase permanent magnet synchronous motor in China.It can choose Hall sensor and encoder sensor(high precision position sensor)according for your needs.
  2. The speed of the vehicle can reach40-55km/h.
  3. load 1 ton easily climb 30 slope mountain road.
  4. High efficiency,efficiency reached 94%,increase vehicle HangZhouage.
  5. Soft start,six-phase permanent magnet synchronous motor torque than ordinary motor increased by 30%.
  6. Electronic brake assist function,it can effectively reduce brake shoe wear and improve service life
  7. Start smoothly, Three speed regulation function, speed increased by 8km/h,making the vehicle more comfortable to drive
  8. Anti slip down protection make the vehicle safe.
  9. Downhill can control the constant speed so that your vehicle overload downhill more safe
  10. Regenerative braking function for increase HangZhouage
  11. CAN communication protocols ,more intelligent

Why choose CHINAMFG rear axle
 

  1. the variable rear axle is independently developed and manufactured,with mature technical structure, easy to operate, simple and safe. It has obtained the national invention patent.
  2. High and low speed torque conversion,effectively increase the climbing and load capacity
  3. Full floating rear axle structure design increases load capacity,convenient and quick repair and replace of the accessories,no need to remove the rear axle wheels, better braking performance .
  4. Gear machining accuracy is very high, stable performance, low noise
  5. A variety of gear ratio options to meet the needs of various vehicles.

Packaging & Shipping

Foam+ carto/wooden case

Company Profile

ZHangZhoug CHINAMFG New Energy Co.,Ltd is a R&D integrated electronic-machinery enterprise , Specializing in the developing and manufacturing high performance BLDC PMSM Motor, Controller and Rear Axle. 
Our products are widely used in three/four wheel Electric Vehicles :rickshaw ,cargo ,tricycle. golf cart,tour bus , ev car, e-forklift, e lifting platform etc. 
We have advanced technology, full type of models, reliable and safety products. With experienced export and engineer team, we can quickly and professionally provide best products for you.

 

 

FAQ

Q:Why choose Datai?

A:We are professional BLDC PMSM motor ,controller ,rear axle manafacturer.We are the top quality and performance products in e-tricycles field, and have rich experience to export, Best products with reasonable price. 

Q:Are you trading company or manufacturer?
A: We are factory.

Q: How long is your delivery time?
A: depands on the quantity.We have the product capacity of 800 motor ,600 rear axle ,1000 controller per day !

Q: What is your terms of payment ?
A: 30% Advance payment by T/T after signing the contract.70% before delivery. 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Electric Tricycle
Operating Speed: Adjust Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Protection Type
Structure and Working Principle: Brushless
Samples:
US$ 200/Set
1 Set(Min.Order)

|

Customization:
Available

|

gear motor

How is the efficiency of a gear motor measured, and what factors can affect it?

The efficiency of a gear motor is a measure of how effectively it converts electrical input power into mechanical output power. It indicates the motor’s ability to minimize losses and maximize its energy conversion efficiency. The efficiency of a gear motor is typically measured using specific methods, and several factors can influence it. Here’s a detailed explanation:

Measuring Efficiency:

The efficiency of a gear motor is commonly measured by comparing the mechanical output power (Pout) to the electrical input power (Pin). The formula to calculate efficiency is:

Efficiency = (Pout / Pin) * 100%

The mechanical output power can be determined by measuring the torque (T) produced by the motor and the rotational speed (ω) at which it operates. The formula for mechanical power is:

Pout = T * ω

The electrical input power can be measured by monitoring the current (I) and voltage (V) supplied to the motor. The formula for electrical power is:

Pin = V * I

By substituting these values into the efficiency formula, the efficiency of the gear motor can be calculated as a percentage.

Factors Affecting Efficiency:

Several factors can influence the efficiency of a gear motor. Here are some notable factors:

  • Friction and Mechanical Losses: Friction between moving parts, such as gears and bearings, can result in mechanical losses and reduce the overall efficiency of the gear motor. Minimizing friction through proper lubrication, high-quality components, and efficient design can help improve efficiency.
  • Gearing Efficiency: The design and quality of the gears used in the gear motor can impact its efficiency. Gear trains can introduce mechanical losses due to gear meshing, misalignment, or backlash. Using well-designed gears with proper tooth profiles and minimizing gear train losses can improve efficiency.
  • Motor Type and Construction: Different types of motors (e.g., brushed DC, brushless DC, AC induction) have varying efficiency characteristics. Motor construction, such as the quality of magnetic materials, winding resistance, and rotor design, can also affect efficiency. Choosing motors with higher efficiency ratings can improve overall gear motor efficiency.
  • Electrical Losses: Electrical losses, such as resistive losses in motor windings or in the motor drive circuitry, can reduce efficiency. Minimizing resistance, optimizing motor drive electronics, and using efficient control algorithms can help mitigate electrical losses.
  • Load Conditions: The operating conditions and load characteristics placed on the gear motor can impact its efficiency. Heavy loads, high speeds, or frequent acceleration and deceleration can increase losses and reduce efficiency. Matching the gear motor’s specifications to the application requirements and optimizing load conditions can improve efficiency.
  • Temperature: Elevated temperatures can significantly affect the efficiency of a gear motor. Excessive heat can increase resistive losses, reduce lubrication effectiveness, and affect the magnetic properties of motor components. Proper cooling and thermal management techniques are essential to maintain optimal efficiency.

By considering these factors and implementing measures to minimize losses and optimize performance, the efficiency of a gear motor can be enhanced. Manufacturers often provide efficiency specifications for gear motors, allowing users to select motors that best meet their efficiency requirements for specific applications.

gear motor

Can gear motors be used for precise positioning, and if so, what features enable this?

Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

1. Gear Reduction:

One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

2. High Resolution Encoders:

Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

3. Closed-Loop Control:

Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

4. Stepper Motors:

Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

5. Servo Motors:

Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

6. Motion Control Algorithms:

Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China best 48V 2000W BLDC Gear Motor for Electric Tricycle, Ebike, Rickshaw, Electric Motorcycle   vacuum pump ac system	China best 48V 2000W BLDC Gear Motor for Electric Tricycle, Ebike, Rickshaw, Electric Motorcycle   vacuum pump ac system
editor by CX 2024-02-14

China best Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor vacuum pump ac system

Product Description

Product Description

Introduction:

     Y2 series three-phase asynchronous motor is Y series motor the upgrading of product, is the totally enclosed, fan-cooled induction motor for general purpose .
 It was the newest product in the 90S’ ,its overall level has reached the same products abroad at the beginning of 90S’level. The product apply to economic lake-off fields, such as machine tools, water pump, fan, compressor, also can be applied to transportation, stirring, printing, agricultural machinery, food and other kinds of excluding inflammable, explosive or corrosive gas.
     Y2 series three phase asynchronous motor installation size and power grade in conformity with relevant standards of IEC and Germany DIN42673 standard line and Y series motor, its shell protection grade for IP54, cooling method for IC41l, operate continuously (S1). Using F insulation class and grade B assessment according to temperature (except for 315 L2-2, 4355 all specifications F grade the assessment, and ask the assessment load noise index.
        Y2 series three-phase asynchronous motor the rated voltage is 380 V. rated frequency is 50 Hz. 3 KW the following connection is Y , other power are delta connection . Motor running the place at no more than 1000 m; Environment air temperature changes with seasons, but no more than 40 °C; Minimum environment air temperature is-15 °C; The wet month average high relative humidity is 90%; At the same time, this month is not higher than the lowest average temperature 25 °C.
 

Motor Features:

1. Frame size:H56-355;
2. Power:0.12-315Kw;
3. Voltage: 380V;

4. Rated Frequency: 50 Hz / 60 Hz;

5. Poles: 2 / 4 / 6 / 8 / 10

6. Speed: 590 -2980 r/min

7. Ambient Temperature: -15°C-40°C 

8. Model of CONEECTION: Y-Connection for 3 KW motor or less while Delta-Connection for 4 KW motor or more;

9. Mounting:  B3; B5; B35; B14; B34; 

10. Current: 1.5-465 A (AC);

11. Duty: continuous (S1);

12. Insulation Class:  B;

13. Protection Class:  IP44,IP54,IP55;

14. Frame material: aluminum body(56-132 frame), cast iron(71-355 frame)

15. Terminal box : Top or Side 

16. Cooling Method: IC411 Standards;

17. Altitude: No more than 1,000 meters above sea level;

18. Packing: 63-112 frame be packaged by carton&pallets

                   132-355 frame be packaged by plywood case;

19. Certifications: CE, CCC, ISO9001: 2008

 

Factory Advantages

 

1 . 15 years history

 

2. Competitive Price

 

3. Guaranteed Quality 

 

4. Fast delivery time, Normal models about 15-20days , another not normal models need about 30days

 

5. 100% testing after each process and final testing before packing ,all raw material is good quality .100% cooper wire, Cold-rolled silicon steel sheet,good quaility shafts ,bearings,stators ,fan,fan covers.and so on.

 

6. High efficiency

 

7. Low noise 

 

8. Long life

 

9. Power saving

 

10. Slight vibration

 

11. It is newly designed in conformity with the relevant rules of IEC standards, Strictly and Perfect Management is guaranteed for Production ;

 

12. Professional Service

 

13. Warranty: 12 months from date of delivery

 

14. Main Market: South America, Middle East, Southest Asia, Europe,Africa and so on  

 

15. We have Certification for CE, CCC, ISO9001,High quality and competitive price !

 

Installation Instructions

   Y2 Three-phase Asynchronous Electric Motor
1). Power:  0.12KW-315KW;
2). Frame:  H56 to 355;
3). Shell:   cast iron body , aluminum body ;
4). Pole:  2/4/6/8 poles;
5). Mounting arrangement:  B3/B5/B14/B35/B34 or other;
6). Voltage:   220V, 380V, 400V, 415V, 440V or on request (50Hz or 60Hz);
7). Protection class:  IP54 / IP55 /IP65;
8). Duty/Rating:  S1 (Continuous);
9). Cooling method:   IC411 (SELF-FAN cooling);
10). Insulation class:   F;
11).Standard:  (IEC) EN60034-1 & EN1065714-1.

 

Technical Data

TYPE OUTPUT FULL LOAD Ist/TN Tst/TN Tmax/TN
HP KW Speed
(RPM)
Current
(A)
Efficiency
η(%)
Power Factor
(cosΦ)
Synchronous Speed 3000 rpm
Y2-631-2 0.18 0.25 2720 0.53 65 0.80 5.5 2.2 2.2
Y2-632-2 0.25 0.34 2720 0.69 68 0.81 5.5 2.2 2.2
Y2-711-2 0.37 0.5 2740 0.99 70 0.81 6.1 2.2 2.2
Y2-712-2 0.55 0.75 2740 1.4 73 0.82 6.1 2.2 2.3
Y2-801-2 0.75 1 2835 1.83 77.4 0.83 6.1 2.2 2.3
Y2-802-2 1.1 1.5 2835 2.58 79.6 0.84 7 2.2 .2.3
Y2-90S-2 1.5 2 2845 3.43 81.3 0.84 7 2.2 2.3
Y2-90L-2 2.2 3 2845 4.85 83.2 0.85 7 2.2 2.3
Y2-100L-2 3 4 2875 6.31 84.6 0.87 7.5 2.2 2.3
Y2-112M-2 4 5.5 2895 8.1 85.8 0.88 7.5 2.2 2.3
Y2-132S1-2 5.5 7.5 2905 11 87 0.88 7.5 2.2 2.3
Y2-132S2-2 7.5 10 2905 14.9 88.1 0.88 7.5 2.2 2.3
Y2-160M1-2 11 15 2935 21.3 89.4 0.89 7.5 2.2 2.3
Y2-160M2-2 15 20 2935 28.8 90.3 0.89 7.5 2.2 2.3
Y2-160L-2 18.5 25 2935 34.7 90.9 0.90 7.5 2.2 2.3
Y2-180M-2 22 30 2945 41 91.3 0.90 7.5 2 2.3
Y2-200L1-2 30 40 2955 55.5 92 0.90 7.5 2 2.3
Y2-200L2-2 37 50 2955 67.9 92.5 0.90 7.5 2 2.3
Y2-225M-2 45 60 2975 82.3 92.9 0.92 7.5 2 2.3
Y2-250M-2 55 75 2975 101 93.2 0.90 7.5 2 2.3
Y2-280S-2 75 100 2975 134 93.8 0.90 7.5 2 2.3
Y2-315S-2 110 150 2980 195 94.3 0.91 7.1 1.8 2.2
Y2-315M-2 132 180 2980 233 94.6 0.91 7.1 1.8 2.2
Y2-315L1-2 160 200 2980 279 94.8 0.92 7.1 1.8 2.2
Y2-315L2-2 200 270 2980 348 95 0.92 7.1 1.8 2.2
Y2-355M-2 250 340 2980 433 95 0.92 7.1 1.6 2.2
Y2-355L-2 315 430 2980 544 95 0.92 5.8 1.6 2.2
Y2-400M1-2 355 475 2975 618 95.9 0.91 5.8 1.23 2.53
Y2-400M2-2 400 535 2982 689 96.0 0.92 5.74 1.31 2.43
Y2-400M3-2 450 600 2982 775 96.1 0.92 7.27 1.83 2.98
Y2-400L1-2 500 670 2982 853 96.3 0.92 6.14 1.2 2.9
Y2-400L2-2 560 750 2982 952 96.3 0.92 5.46 0.98 2.57
Synchronous Speed 1500 rpm
Y2-631-4 0.12 0.17 1310 0.44 57 0.72 4.4 2.1 2.2
Y2-632-4 0.18 0.25 1310 1.62 60 0.73 4.4 2.1 2.2
Y2-711-4 0.25 0.34 1330 0.79 65 0.75 5.2 2.1 2.2
Y2-712-4 0.37 0.5 1330 1.12 67 0.74 5.2 2.1 2.2
Y2-801-4 0.55 0.75 1395 1.57 71 0.75 5.2 2.4 2.3
Y2-802-4 0.75 1 1395 2.03 79.6 0.76 6 2.3 2.3
Y2-90S-4 1.1 1.5 1405 2.89 81.4 0.77 6 2.3 2.3
Y2-90L-4 1.5 2 1405 3.7 82.8 0.79 6 2.3 2.3
Y2-100L1-4 2.2 3 1435 5.16 84.3 0.81 7 2.3 2.3
Y2-100L2-4 3 4 1435 6.78 85.5 0.82 7 2.3 2.3
Y2-112M-4 4 5.5 1445 8.8 86.6 0.82 7 2.3 2.3
Y2-132S-4 5.5 7.5 1445 11.7 87.7 0.83 7 2.3 2.3
Y2-132M-4 7.5 10 1445 15.6 88.7 0.84 7 2.3 2.3
Y2-160M-4 11 15 1460 22.3 89.8 0.84 7 2.2 2.3
Y2-160L-4 15 20 1460 30.1 90.6 0.85 7.5 2.2 2.3
Y2-180M-4 18.5 25 1470 36.5 91.2 0.86 7.5 2.2 2.3
Y2-180L-4 22 30 1470 43.2 91.6 0.86 7.5 2.2 2.3
Y2-200L-4 30 40 1470 57.6 92.3 0.86 7.2 2.2 2.3
Y2-225S-4 37 50 1485 69.9 92.7 0.87 7.2 2.2 2.3
Y2-225M-4 45 60 1485 84.7 93.1 0.87 7.2 2.2 2.3
Y2-250M-4 55 75 1485 103 93.5 0.87 7.2 2.2 2.3
Y2-280S-4 75 100 1485 140 94 0.87 7.2 2.2 2.3
Y2-280M-4 90 125 1490 167 94.2 0.87 7.2 2.2 2.3
Y2-315S-4 110 150 1490 201 94.5 0.88 6.9 2.1 2.2
Y2-315M-4 132 180 1490 240 94.7 0.88 6.9 2.1 2.2
Y2-315L1-4 160 200 1490 287 94.9 0.89 6.9 2.1 2.2
Y2-315L2-4 200 270 1490 359 94.1 0.89 6.9 2.1 2.2
Y2-355M-4 250 340 1485 443 95.1 0.90 6.9 2.1 2.2
Y2-355L-4 315 430 1485 556 95.1 0.90 6.9 2.1 2.2
Y2-400M1-4 355 475 1490 641 95.5 0.88 6.5 2.6 1.93
Y2-400M2-4 400 535 1490 723 95.5 0.88 6.5 2.75 1.8
Y2-400M3-4 450 600 1490 804 95.5 0.89 6.5 2.81 2.03
Y2-400L1-4 500 670 1490 893 95.6 0.89 6.61 2.52 1.83
Y2-400L2-4 560 750 1490 971 96.0 0.89 6.6 2.67 2.02
Synchronous Speed 1000 rpm
Y2-711-6 0.18 0.25 850 0.74 56 0.66 4 1.9 2
Y2-712-6 0.25 0.34 850 0.95 59 0.68 4 1.9 2
Y2-801-6 0.37 0.5 890 1.3 62 0.70 4.7 1.9 2
Y2-802-6 0.55 0.75 890 1.79 65 0.72 4.7 1.9 2.1
Y2-90S-6 0.7 1 915 2.29 75.9 0.72 5.5 2 2.1
Y2-90L-6 1.1 1.5 915 3.18 78.1 0.73 5.5 2 2.1
Y2-100L-6 1.5 2 945 3.94 79.8 0.75 5.5 2 2.1
Y2-112M-6 2.2 3 945 5.6 81.8 0.76 6.5 2 2.1
Y2-132S-6 3 4 965 7.4 83.3 0.76 6.5 2.1 2.1
Y2-132M1-6 4 5.5 965 9.8 84.6 0.76 6.5 2.1 2.1
Y2-132M2-6 5.5 7.5 965 12.9 86 0.77 6.5 2.1 2.1
Y2-160M-6 7.5 10 975 17 87.2 0.78 6.5 2 2.1
Y2-160L-6 11 15 975 24.2 88.7 0.81 7 2 2.1
Y2-180L-6 15 20 975 31.6 89.7 0.81 7 2 2.1
Y2-200L1-6 18.5 25 975 38.6 90.4 0.83 7 2.1 2.1
Y2-200L2-6 22 30 975 44.7 90.9 0.84 7 2.1 2.1
Y2-225M-6 30 40 980 59.3 91.7 0.86 7 2 2.1
Y2-250M-6 37 50 980 71 92.2 0.86 7 2.1 2.1
Y2-280S-6 45 60 980 86 92.7 0.86 7 2.1 2
Y2-280M-6 55 75 980 105 93.1 0.86 7 2.1 2
Y2-315S-6 75 100 980 141 93.7 0.86 7 2 2
Y2-315M-6 90 125 980 169 94 0.86 7 2 2
Y2-315L1-6 110 150 980 206 94.3 0.86 6.7 2 2
Y2-315L2-6 132 180 980 244 94.6 0.87 6.7 2 2
Y2-355M1-6 160 200 985 292 94.8 0.88 6.7 1.9 2
Y2-355M2-6 200 270 985 365 95 0.88 6.7 1.9 2
Y2-355L-6 250 340 985 455 95 0.88 6.7 1.9 2
Y2-400M1-6 280 380 990 510 95.8 0.87 5.9 2.3 1.8
Y2-400M2-6 315 430 990 574 95.8 0.87 5.9 2.3 1.8
Y2-400M3-6 355 475 990 638 95.8 0.87 5.9 2.3 1.8
Y2-400L1-6 400 535 990 719 96.0 0.88 6.3 2.3 1.8
Y2-400L2-6 450 600 990 796 96.5 0.89 6.3 2.3 1.8
Synchronous Speed 750 rpm
Y2-801-8 0.18 0.25 630 0.88 51 0.61 3.3 1.8 1.9
Y2-802-8 0.25 0.34 640 1.15 54 0.61 3.3 1.8 1.9
Y2-90S-8 0.37 0.5 660 1.49 62 0.61 4 1.8 1.9
Y2-90L-8 0.55 0.75 660 2.18 63 0.61 4 1.8 2
Y2-100L1-8 0.75 1 680 2.39 71 0.67 4 1.8 2
Y2-100L2-8 1.1 1.5 680 3.32 73 0.69 5 1.8 2
Y2-112M-8 1.5 2 690 4.5 75 0.69 5 1.8 2
Y2-132S-8 2.2 3 690 6 78 0.71 6 1.8 2
Y2-132M-8 3 4 710 7.9 79 0.73 6 1.8 2
Y2-160M1-8 4 5 710 10.3 81 0.73 6 1.9 2
Y2-160M2-8 5.5 7.5 720 13.6 83 0.74 6 2 2
Y2-160L-8 7.5 10 720 17.8 85.5 0.75 6 2 2
Y2-180L-8 11 15 730 25.1 87.5 0.76 6.6 2 2
Y2-200L-8 15 20 730 34.1 88 0.76 6.6 2 2
Y2-225S-8 18.5 25 730 40.6 90 0.76 6.6 1.9 2
Y2-225M-8 22 30 740 47.4 90.5 0.78 6.6 1.9 2
Y2-250M-8 30 40 740 64 91 0.79 6.6 1.9 2
Y2-280S-8 37 50 740 78 91.5 0.79 6.6 1.9 2
Y2-280M-8 45 60 740 94 92 0.79 6.6 1.9 2
Y2-315S-8 55 75 740 111 92.8 0.81 6.6 1.8 2
Y2-315M-8 75 100 740 151 93 0.81 6.6 1.8 2
Y2-315L1-8 90 125 740 178 93.8 0.82 6.6 1.8 2
Y2-315L2-8 110 150 740 217 94 0.82 7.2 1.8 2
Y2-355M1-8 132 180 740 261 93.7 0.82 7.2 1.8 2
Y2-355M2-8 160 200 740 315 94.2 0.82 7.2 1.8 2
Y2-355L-8 200 270 740 388 94.5 0.83 7.2 1.8 2
Y2-400M1-8 250 340 745 494 95.0 0.81 6.2 2.3 1.8
Y2-400M2-8 280 380 745 552 95.0 0.82 6.2 2.3 1.8
Y2-400L1-8 315 430 745 592 95.0 0.85 6.2 2.3 1.8
Y2-400L2-8 355 475 745 692 95.0 0.85 6.2 2.3 1.8
Y2-400L3-8 400 535 745 780 95.0 0.85 6.2 2.3 1.8
Synchronous Speed 600 rpm
Y2-315S-10 45 60 590 100 91.5 0.75 6.2 1.5 2
Y2-315M-10 55 75 590 121 92 0.75 6.2 1.5 2
Y2-315L1-10 75 100 590 162 92.5 0.76 6.2 1.2 2
Y2-315L2-10 90 125 590 191 93 0.77 6.2 1.5 2
Y2-355M1-10 110 150 590 230 93.2 0.78 6 1.3 2
Y2-355M2-10 132 180 590 275 93.5 0.78 6 1.3 2
Y2-355L-10 160 200 590 334 93.5 0.78 6 1.3 2
Y2-400M1-10 200 270 595 404 95.0 0.80 6.2 2.6 1.8
Y2-400M2-10 250 340 595 495 95.0 0.81 6.2 2.6 1.8
Y2-400L1-10 280 380 595 554 95.0 0.82 6.2 2.6 1.8
Y2-400L2-10 315 430 595 630 95.0 0.82 6.2 2.6 1.8

Detailed Photos

 

 

Our OEM Motors, Diesel generator sets ,Alternators are talior made to fit the OEM customer’s application.  Our  based Engineering Design team work with you to ensure the motor meets your individual needs.

2 ,4,6 ,8 and 10 pole operation.  with CE Approvals available
All Motors, Diesel generator sets ,Alternators may be designed for optional voltages and frequencies.

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

gear motor

Are there innovations or emerging technologies in the field of gear motor design?

Yes, there are several innovations and emerging technologies in the field of gear motor design. These advancements aim to improve the performance, efficiency, compactness, and reliability of gear motors. Here are some notable innovations and emerging technologies in gear motor design:

1. Miniaturization and Compact Design:

Advancements in manufacturing techniques and materials have enabled the miniaturization of gear motors without compromising their performance. Gear motors with compact designs are highly sought after in applications where space is limited, such as robotics, medical devices, and consumer electronics. Innovative approaches like micro-gear motors and integrated motor-gear units are being developed to achieve smaller form factors while maintaining high torque and efficiency.

2. High-Efficiency Gearing:

New gear designs focus on improving efficiency by reducing friction and mechanical losses. Advanced gear manufacturing techniques, such as precision machining and 3D printing, allow for the creation of intricate gear tooth profiles that optimize power transmission and minimize losses. Additionally, the use of high-performance materials, coatings, and lubricants helps reduce friction and wear, improving overall gear motor efficiency.

3. Magnetic Gearing:

Magnetic gearing is an emerging technology that replaces traditional mechanical gears with magnetic fields to transmit torque. It utilizes the interaction of permanent magnets to transfer power, eliminating the need for physical gear meshing. Magnetic gearing offers advantages such as high efficiency, low noise, compactness, and maintenance-free operation. While still being developed and refined, magnetic gearing holds promise for various applications, including gear motors.

4. Integrated Electronics and Controls:

Gear motor designs are incorporating integrated electronics and controls to enhance performance and functionality. Integrated motor drives and controllers simplify system integration, reduce wiring complexity, and allow for advanced control features. These integrated solutions offer precise speed and torque control, intelligent feedback mechanisms, and connectivity options for seamless integration into automation systems and IoT (Internet of Things) platforms.

5. Smart and Condition Monitoring Capabilities:

New gear motor designs incorporate smart features and condition monitoring capabilities to enable predictive maintenance and optimize performance. Integrated sensors and monitoring systems can detect abnormal operating conditions, track performance parameters, and provide real-time feedback for proactive maintenance and troubleshooting. This helps prevent unexpected failures, extend the lifespan of gear motors, and improve overall system reliability.

6. Energy-Efficient Motor Technologies:

Gear motor design is influenced by advancements in energy-efficient motor technologies. Brushless DC (BLDC) motors and synchronous reluctance motors (SynRM) are gaining popularity due to their higher efficiency, better power density, and improved controllability compared to traditional brushed DC and induction motors. These motor technologies, when combined with optimized gear designs, contribute to overall system energy savings and performance improvements.

These are just a few examples of the innovations and emerging technologies in gear motor design. The field is continuously evolving, driven by the need for more efficient, compact, and reliable motion control solutions in various industries. Gear motor manufacturers and researchers are actively exploring new materials, manufacturing techniques, control strategies, and system integration approaches to meet the evolving demands of modern applications.

gear motor

Can gear motors be used for precise positioning, and if so, what features enable this?

Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

1. Gear Reduction:

One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

2. High Resolution Encoders:

Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

3. Closed-Loop Control:

Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

4. Stepper Motors:

Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

5. Servo Motors:

Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

6. Motion Control Algorithms:

Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China best Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor   vacuum pump ac system	China best Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor   vacuum pump ac system
editor by CX 2024-02-11

China high quality ZD 60 mm / 70mm 80mm 90mm 104mm Long Life Low Noise Electric AC Gear Reduction Motor vacuum pump oil

Product Description

Model Selection

ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.

• Drawing Request

If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
 

• On Your Need

We can modify standard products or customize them to meet your specific needs.

 

Detailed Photos

Product Parameters

size output power voltage Frequency
60.70.80.90.100mm 3.6.10.20.40.60.90.100W 110.220.12V 50/60HZ

SPECIFICATION FOR AC MOTORS:
 

MOTOR FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
MOTOR TYPE INDUCTION MOTOR / REVERSIBLE MOTOR / TORQUE MOTOR / SPEED CONTROL MOTOR
SERIES K series
OUTPUT POWER 3 W / 6W / 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W (can be customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; round shaft, D-cut shaft, key-way shaft (can be customized)
Voltage type Single phase 100-120V 50/60Hz 4P Single phase 200-240V 50/60Hz 4P
Three phase 200-240V 50/60Hz Three phase 380-415V 50/60Hz 4P
Three phase 440-480V 60Hz 4P Three phase 200-240/380-415/440-480V 50/60/60Hz 4P
Accessories Terminal box type / with Fan / thermal protector / electromagnetic brake
Above 60 W, all assembled with fan
GEARBOX FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
GEAR RATIO MINIMUM 3:1—————MAXIMUM 750:1
GEARBOX TYPE PARALLEL SHAFT GEARBOX AND STRENGTH TYPE
Right angle hollow worm shaft Right angle spiral bevel hollow shaft L type hollow shaft
Right angle CHINAMFG worm shaft Right angle spiral bevel CHINAMFG shaft L type CHINAMFG shaft
K2 series air tightness improved type
Certification CCC  CE  UL  RoHS

 

Other Related Products

Click here to find what you are looking for:

Company Profile

 

FAQ

Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 2
Customization:
Available

|

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

What is the significance of gear reduction in gear motors, and how does it affect efficiency?

Gear reduction plays a significant role in gear motors as it enables the motor to deliver higher torque while reducing the output speed. This feature has several important implications for gear motors, including enhanced power transmission, improved control, and potential trade-offs in terms of efficiency. Here’s a detailed explanation of the significance of gear reduction in gear motors and its effect on efficiency:

Significance of Gear Reduction:

1. Increased Torque: Gear reduction allows gear motors to generate higher torque output compared to a motor without gears. By reducing the rotational speed at the output shaft, gear reduction increases the mechanical advantage of the system. This increased torque is beneficial in applications that require high torque to overcome resistance, such as lifting heavy loads or driving machinery with high inertia.

2. Improved Control: Gear reduction enhances the control and precision of gear motors. By reducing the speed, gear reduction allows for finer control over the motor’s rotational movement. This is particularly important in applications that require precise positioning or accurate speed control. The gear reduction mechanism enables gear motors to achieve smoother and more controlled movements, reducing the risk of overshooting or undershooting the desired position.

3. Load Matching: Gear reduction helps match the motor’s power characteristics to the load requirements. Different applications have varying torque and speed requirements. Gear reduction allows the gear motor to achieve a better match between the motor’s power output and the specific requirements of the load. It enables the motor to operate closer to its peak efficiency by optimizing the torque-speed trade-off.

Effect on Efficiency:

While gear reduction offers several advantages, it can also affect the efficiency of gear motors. Here’s how gear reduction impacts efficiency:

1. Mechanical Efficiency: The gear reduction process introduces mechanical components such as gears, bearings, and lubrication systems. These components introduce additional friction and mechanical losses into the system. As a result, some energy is lost in the form of heat during the gear reduction process. The efficiency of the gear motor is influenced by the quality of the gears, the lubrication used, and the overall design of the gear system. Well-designed and properly maintained gear systems can minimize these losses and optimize mechanical efficiency.

2. System Efficiency: Gear reduction affects the overall system efficiency by impacting the motor’s electrical efficiency. In gear motors, the motor typically operates at higher speeds and lower torques compared to a direct-drive motor. The overall system efficiency takes into account both the electrical efficiency of the motor and the mechanical efficiency of the gear system. While gear reduction can increase the torque output, it also introduces additional losses due to increased mechanical complexity. Therefore, the overall system efficiency may be lower compared to a direct-drive motor for certain applications.

It’s important to note that the efficiency of gear motors is influenced by various factors beyond gear reduction, such as motor design, control systems, and operating conditions. The selection of high-quality gears, proper lubrication, and regular maintenance can help minimize losses and improve efficiency. Additionally, advancements in gear technology, such as the use of precision gears and improved lubricants, can contribute to higher overall efficiency in gear motors.

In summary, gear reduction is significant in gear motors as it provides increased torque, improved control, and better load matching. However, gear reduction can introduce mechanical losses and affect the overall efficiency of the system. Proper design, maintenance, and consideration of application requirements are essential to optimize the balance between torque, speed, and efficiency in gear motors.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China high quality ZD 60 mm / 70mm 80mm 90mm 104mm Long Life Low Noise Electric AC Gear Reduction Motor   vacuum pump oil	China high quality ZD 60 mm / 70mm 80mm 90mm 104mm Long Life Low Noise Electric AC Gear Reduction Motor   vacuum pump oil
editor by CX 2024-02-09

China manufacturer Intelligent AC Electric Servo Motor for Solar Power Industry (SGM7A-10AFA61 Replacement) vacuum pump electric

Product Description

Blue Equator Intelligent Equipment Co., Ltd. is a professional R & D, production, sales of servo system and control system, energy storage system and other related products of comprehensive solutions provider.

 

Pre-delivery Inspection

We have a strict quality inspection process, all products before the packaging to go through strict performance and quality testing, to ensure that each product is qualified.

Inventory & Distribution

Our company has a professional product storage base, which is the guarantee of continuous supply of goods throughout our supply chain. Warehouse products are complete, stacked neatly. Daily inventory of products out of the warehouse to ensure the accurate quantity of goods. At present, all the released goods have been fully stocked, please new and old customers rest assured to buy, we will be the fastest speed to deliver the goods to you. (except for special edition products.)

Packing & Shipping
 

We have extensive experience in the export business and have cooperated with many international trading companies. Cooperating express companies such as DHL, fedex, UPS, etc., we can arrange the transportation mode according to the transportation requirements of customers.

Before transportation, we will package the products according to the needs of customers and the packaging and transportation requirements of export products. According to the type and characteristics of the product, we will choose the appropriate packaging materials to protect the product and prevent damage to the product due to vibration, bump and other factors during transportation.

Global Sales & Technical Services

Our professional team provides you with a full range of services, covering the world, and is ready to answer all your questions.

FAQ  
                                                                                                                                                                                                                                                                   

Q1. How long is the delivery time? 
A1. We’ll arrange the delivery after you order, the estimated production time will be around 7-15 days, from the receipt of order. Shipping normally takes 7-25 working days. 

Q2. Are you trading company or manufacturer?
A2. Yes, we are manufacturer, we have our own factory.

Q3. Can I test sample?
A3. Yes, sample charged can be offered for testing.
 
Q4. Can we be agent or distributor?
A4. Yes, welcome and we will support you.

Q5. How about the after services and technical support?
A5. We offer 24h customer service for you. In addition to existing products, we can also offer other technical products according to your needs, the technical supports are free.

Q6. How about the shippment?
A6. We can ship goods by express, such as DHL, FedEx, UPS, CDEK, ARAMEX, and by train, by ship.

Q7. How about warranty?
A7.  We supply all products with 12 month warranty.

Q8. How about the Payment?
A8. We accept T/T, Paypal, this is negotiable.          /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 158/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

Are there common issues or challenges associated with servo motor systems, and how can they be addressed?

Servo motor systems are widely used in various applications, but they can encounter common issues or challenges that affect their performance and reliability. Let’s explore some of these issues and discuss potential solutions:

1. Positioning and Tracking Errors:

One common challenge in servo motor systems is positioning and tracking errors. These errors can occur due to factors such as mechanical backlash, encoder resolution limitations, or disturbances in the system. To address this issue, careful calibration and tuning of the servo control system are necessary. This includes adjusting feedback gains, implementing feedback filtering techniques, and utilizing advanced control algorithms to improve the system’s accuracy and minimize errors. Additionally, employing high-resolution encoders and backlash compensation mechanisms can help enhance the positioning and tracking performance.

2. Vibration and Resonance:

Vibration and resonance can impact the performance of servo motor systems, leading to reduced accuracy and stability. These issues can arise from mechanical resonances within the system or external disturbances. To mitigate vibration and resonance problems, it is crucial to analyze the system’s dynamics and identify critical resonant frequencies. Implementing vibration dampening techniques such as mechanical isolation, using vibration-absorbing materials, or employing active vibration control methods can help minimize the effect of vibrations and improve the system’s performance.

3. Overheating and Thermal Management:

Servo motors can generate heat during operation, and inadequate thermal management can lead to overheating and potential performance degradation. To address this issue, proper cooling and thermal management techniques should be employed. This may involve using heat sinks, fans, or liquid cooling systems to dissipate heat efficiently. Ensuring adequate ventilation and airflow around the motor and avoiding excessive current or overloading can also help prevent overheating. Monitoring the motor’s temperature and implementing temperature protection mechanisms can further safeguard the motor from thermal damage.

4. Electrical Noise and Interference:

Electrical noise and interference can affect the performance and reliability of servo motor systems. These issues can arise from electromagnetic interference (EMI) or radio frequency interference (RFI) from nearby equipment or electrical sources. To mitigate electrical noise, proper shielding and grounding techniques should be employed. Using shielded cables, ferrite cores, and grounding the motor and control system can help minimize the impact of noise and interference. Additionally, employing filtering techniques and surge protection devices can further improve system robustness against electrical disturbances.

5. System Integration and Compatibility:

Integrating a servo motor system into a larger control system or automation setup can present challenges in terms of compatibility and communication. Ensuring proper compatibility between the servo motor and the control system is crucial. This involves selecting appropriate communication protocols, such as EtherCAT or Modbus, and ensuring compatibility with the control signals and interfaces. Employing standardized communication interfaces and protocols can facilitate seamless integration and interoperability. Additionally, thorough testing and verification of the system’s compatibility before deployment can help identify and address any integration issues.

6. Maintenance and Service:

Maintenance and service requirements are important considerations for servo motor systems. Regular maintenance, including lubrication, inspection, and cleaning, can help prevent issues related to wear and tear. Following manufacturer-recommended maintenance schedules and procedures is essential to ensure the longevity and optimal performance of the motor. In case of any malfunctions or failures, having access to technical support from the manufacturer or trained service personnel can help diagnose and address problems effectively.

By being aware of these common issues and challenges associated with servo motor systems and implementing appropriate solutions, it is possible to enhance the performance, reliability, and lifespan of the servo motor system. Regular monitoring, proactive maintenance, and continuous improvement can contribute to optimizing the overall operation and efficiency of the system.

servo motor

How is the size of a servo motor determined based on application requirements?

The size of a servo motor is an important consideration when selecting a motor for a specific application. The size of the motor is determined based on various factors related to the application requirements. Let’s explore how the size of a servo motor is determined:

1. Torque Requirements:

One of the primary factors in determining the size of a servo motor is the torque requirements of the application. The motor should be able to generate sufficient torque to handle the load and overcome any resistance or friction in the system. The required torque depends on factors such as the weight of the load, the distance from the motor’s axis of rotation, and any additional forces acting on the system. By analyzing the torque requirements, one can select a servo motor with an appropriate size and torque rating to meet the application’s needs.

2. Speed and Acceleration Requirements:

The desired speed and acceleration capabilities of the application also influence the size of the servo motor. Different applications have varying speed and acceleration requirements, and the motor needs to be capable of achieving the desired performance. Higher speeds and accelerations may require larger motors with more powerful components to handle the increased forces and stresses. By considering the required speed and acceleration, one can determine the size of the motor that can meet these demands.

3. Inertia and Load Inertia Ratio:

The inertia of the load and the inertia ratio between the load and the servo motor are important considerations in sizing the motor. Inertia refers to the resistance of an object to changes in its rotational motion. If the load has a high inertia, it requires a servo motor with sufficient size and torque to accelerate and decelerate the load effectively. The inertia ratio, which is the ratio of the load inertia to the motor inertia, affects the motor’s ability to control the load’s motion accurately. A proper balance between the load and motor inertia is necessary to achieve optimal performance and stability in the system.

4. Duty Cycle and Continuous Operation:

The duty cycle and continuous operation requirements of the application also impact the motor size selection. Duty cycle refers to the ratio of the motor’s operating time to the total cycle time. Applications with high-duty cycles or continuous operation may require larger motors that can handle sustained operation without overheating or performance degradation. It is important to consider the motor’s continuous torque rating and thermal characteristics to ensure it can operate reliably under the given duty cycle requirements.

5. Physical Space Constraints:

The physical space available for installing the servo motor is another factor to consider. The motor’s dimensions should fit within the available space, considering factors such as motor length, diameter, and any mounting requirements. It is essential to ensure that the chosen motor can be easily integrated into the system without interfering with other components or causing space constraints.

6. Weight Limitations:

The weight limitations of the application may influence the motor size selection. If there are weight restrictions, such as in mobile or lightweight applications, it is necessary to choose a servo motor that is compact and lightweight while still providing the required performance. Lighter servo motors can help optimize the overall weight and balance of the system.

7. Cost Considerations:

Cost is also a factor to consider when determining the size of a servo motor. Larger motors with higher torque and performance capabilities tend to be more expensive. It is important to strike a balance between the required performance and the cost constraints of the application. Analyzing the cost-effectiveness and overall value of the motor in relation to the application requirements is essential.

By considering these factors, one can determine the appropriate size of a servo motor that can meet the specific application requirements. It is advisable to consult with manufacturers or experts in the field to ensure the chosen motor size aligns with the application needs and provides optimal performance and reliability.

servo motor

In which industries are servo motors commonly used, and what applications do they serve?

Servo motors are widely used across various industries due to their precise control capabilities and ability to deliver high torque at different speeds. Here are some industries where servo motors are commonly employed, along with their applications:

1. Robotics:

Servo motors are extensively used in robotics to control the movement of robotic limbs and joints. They enable precise positioning and accurate control, allowing robots to perform tasks with high accuracy and repeatability. Servo motors are also employed in humanoid robots, industrial manipulators, and collaborative robots (cobots).

2. Manufacturing and Automation:

In manufacturing and automation industries, servo motors are used in various applications such as conveyor systems, pick-and-place machines, packaging equipment, and assembly lines. Servo motors provide precise control over the movement of components, ensuring accurate positioning, fast response times, and high throughput.

3. CNC Machining:

Servo motors play a vital role in computer numerical control (CNC) machines, where they control the movement of axes (e.g., X, Y, and Z). These motors enable precise and smooth motion, allowing CNC machines to accurately shape and cut materials such as metal, wood, and plastics. Servo motors are also used in CNC routers, milling machines, lathes, and laser cutting equipment.

4. Aerospace and Aviation:

Servo motors find applications in the aerospace and aviation industries, particularly in flight control systems. They are used to control the movement of aircraft surfaces, such as ailerons, elevators, rudders, and flaps. Servo motors ensure precise and responsive control, contributing to the stability and maneuverability of aircraft.

5. Medical Devices:

In the medical field, servo motors are used in various devices and equipment. They are employed in robotic surgery systems, prosthetics, exoskeletons, infusion pumps, diagnostic equipment, and laboratory automation. Servo motors enable precise and controlled movements required for surgical procedures, rehabilitation, and diagnostic tests.

6. Automotive:

Servo motors have several applications in the automotive industry. They are used in electric power steering systems, throttle control, braking systems, and active suspension systems. Servo motors provide accurate control over steering, acceleration, and braking, enhancing vehicle safety and performance.

7. Entertainment and Motion Control:

Servo motors are widely used in the entertainment industry for animatronics, special effects, and motion control systems. They enable realistic movements of animatronic characters, robotic props, and camera rigs in film, television, and theme park attractions. Servo motors also find applications in motion simulators, gaming peripherals, and virtual reality systems.

In addition to these industries, servo motors are utilized in various other fields, including industrial automation, renewable energy systems, textile machinery, printing and packaging, and scientific research.

Overall, servo motors are versatile components that find widespread use in industries requiring precise motion control, accurate positioning, and high torque output. Their applications span across robotics, manufacturing, CNC machining, aerospace, medical devices, automotive, entertainment, and numerous other sectors.

China manufacturer Intelligent AC Electric Servo Motor for Solar Power Industry (SGM7A-10AFA61 Replacement)   vacuum pump electricChina manufacturer Intelligent AC Electric Servo Motor for Solar Power Industry (SGM7A-10AFA61 Replacement)   vacuum pump electric
editor by CX 2024-02-09

China Professional 1.5kw 2500rpm Hot Sales Three Phase Brushless AC Electric Servo Motor Sgm7g-20afs61 with Best Sales

Product Description

Blue Equator Intelligent Equipment Co., Ltd. is a professional R & D, production, sales of servo system and control system, energy storage system and other related products of comprehensive solutions provider.

Pre-delivery Inspection

We have a strict quality inspection process, all products before the packaging to go through strict performance and quality testing, to ensure that each product is qualified.

Inventory & Distribution

Our company has a professional product storage base, which is the guarantee of continuous supply of goods throughout our supply chain. Warehouse products are complete, stacked neatly. Daily inventory of products out of the warehouse to ensure the accurate quantity of goods. At present, all the released goods have been fully stocked, please new and old customers rest assured to buy, we will be the fastest speed to deliver the goods to you. (except for special edition products).

Packing & Shipping
 

We have extensive experience in the export business and have cooperated with many international trading companies. Cooperating express companies such as DHL, fedex, UPS, etc., we can arrange the transportation mode according to the transportation requirements of customers.

Before transportation, we will package the products according to the needs of customers and the packaging and transportation requirements of export products. According to the type and characteristics of the product, we will choose the appropriate packaging materials to protect the product and prevent damage to the product due to vibration, bump and other factors during transportation.

Global Sales & Technical Services

Our professional team provides you with a full range of services, covering the world, and is ready to answer all your questions.

FAQ  
                                                                                                                                                                                                                                                                   

Q1. How long is the delivery time? 
A1. We’ll arrange the delivery after you order, the estimated production time will be around 7-15 days, from the receipt of order. Shipping normally takes 7-25 working days. 

Q2. Are you trading company or manufacturer?
A2. Yes, we are manufacturer, we have our own factory.

Q3. Can I test sample?
A3. Yes, sample charged can be offered for testing.
 
Q4. Can we be agent or distributor?
A4. Yes, welcome and we will support you.

Q5. How about the after services and technical support?
A5. We offer 24h customer service for you. In addition to existing products, we can also offer other technical products according to your needs, the technical supports are free.

Q6. How about the shippment?
A6. We can ship goods by express, such as DHL, FedEx, UPS, CDEK, ARAMEX, and by train, by ship.

Q7. How about warranty?
A7.  We supply all products with 12 month warranty.

Q8. How about the Payment?
A8. We accept T/T, Paypal, this is negotiable.         

Q9. Could you send me a price list?
A9. For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 266/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

What maintenance practices are recommended for ensuring the longevity of servo motors?

Maintaining servo motors properly is crucial to ensure their longevity and reliable performance. Here are some recommended maintenance practices:

1. Regular Cleaning:

Regularly clean the servo motor to remove dust, debris, and other contaminants that can affect its performance. Use a soft brush or compressed air to clean the motor’s exterior and ventilation ports. Avoid using excessive force or liquid cleaners that could damage the motor.

2. Lubrication:

Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant for the motor. Lubricate the motor’s bearings, gears, and other moving parts as per the specified schedule. Proper lubrication reduces friction, minimizes wear, and helps maintain optimal performance.

3. Inspections:

Regularly inspect the servo motor for signs of wear, damage, or loose connections. Check for any unusual noises, vibrations, or overheating during operation, as these can indicate potential issues. If any abnormalities are detected, consult the manufacturer’s documentation or seek professional assistance for further evaluation and repair.

4. Electrical Connections:

Ensure that all electrical connections to the servo motor, such as power cables and signal wires, are secure and properly insulated. Loose or damaged connections can lead to electrical problems, voltage fluctuations, or signal interference, which can affect the motor’s performance and longevity.

5. Environmental Considerations:

Take into account the operating environment of the servo motor. Ensure that the motor is protected from excessive moisture, dust, extreme temperatures, and corrosive substances. If necessary, use appropriate enclosures or protective measures to safeguard the motor from adverse environmental conditions.

6. Software and Firmware Updates:

Stay updated with the latest software and firmware releases provided by the servo motor manufacturer. These updates often include bug fixes, performance enhancements, and new features that can improve the motor’s functionality and reliability. Follow the manufacturer’s instructions for safely updating the motor’s software or firmware.

7. Training and Documentation:

Ensure that personnel responsible for the maintenance of servo motors are properly trained and familiar with the manufacturer’s guidelines and documentation. This includes understanding recommended maintenance procedures, safety precautions, and troubleshooting techniques. Regular training and access to up-to-date documentation are essential for effective servo motor maintenance.

8. Professional Servicing:

If a servo motor requires complex repairs or servicing beyond regular maintenance, it is advisable to consult a qualified technician or contact the manufacturer’s service center. Attempting to repair or modify the motor without proper expertise can lead to further damage or safety hazards.

By following these maintenance practices, servo motors can operate optimally and have an extended lifespan. Regular cleaning, lubrication, inspections, secure electrical connections, environmental considerations, software updates, training, and professional servicing all contribute to ensuring the longevity and reliable performance of servo motors.

servo motor

Are there different types of servo motors, and how do they differ?

Yes, there are different types of servo motors available, each with its own characteristics and applications. The variations among servo motors can be attributed to factors such as construction, control mechanisms, power requirements, and performance specifications. Let’s explore some of the common types of servo motors and how they differ:

1. DC Servo Motors:

DC servo motors are widely used in various applications. They consist of a DC motor combined with a feedback control system. The control system typically includes a position or velocity feedback sensor, such as an encoder or a resolver. DC servo motors offer good speed and torque control and are often employed in robotics, automation, and hobbyist projects. They can be operated with a separate motor driver or integrated into servo motor units with built-in control electronics.

2. AC Servo Motors:

AC servo motors are designed for high-performance applications that require precise control and fast response times. They are typically three-phase motors and are driven by sinusoidal AC waveforms. AC servo motors often incorporate advanced control algorithms and feedback systems to achieve accurate position, velocity, and torque control. These motors are commonly used in industrial automation, CNC machines, robotics, and other applications that demand high precision and dynamic performance.

3. Brushed Servo Motors:

Brushed servo motors feature a traditional brushed DC motor design. They consist of a rotor with a commutator and carbon brushes that make physical contact with the commutator. The brushes provide electrical connections, allowing the motor’s magnetic field to interact with the rotor’s windings. Brushed servo motors are known for their simplicity and cost-effectiveness. However, they may require more maintenance due to brush wear, and they generally have lower efficiency and shorter lifespan compared to brushless servo motors.

4. Brushless Servo Motors:

Brushless servo motors, also known as brushless DC (BLDC) motors, offer several advantages over brushed motors. They eliminate the need for brushes and commutators, resulting in improved reliability, higher efficiency, and longer lifespan. Brushless servo motors rely on electronic commutation, typically using Hall effect sensors or encoder feedback for accurate rotor position detection. These motors are widely used in robotics, industrial automation, aerospace, and other applications that require high-performance motion control with minimal maintenance.

5. Linear Servo Motors:

Linear servo motors are designed to provide linear motion instead of rotational motion. They consist of a primary part (stator) and a secondary part (slider or forcer) that interact magnetically to generate linear motion. Linear servo motors offer advantages such as high speed, high acceleration, and precise positioning along a linear axis. They find applications in various industries, including semiconductor manufacturing, packaging, printing, and machine tools.

6. Micro Servo Motors:

Micro servo motors are small-sized servo motors often used in applications with limited space and low power requirements. They are commonly found in hobbyist projects, model airplanes, remote-controlled vehicles, and small robotic systems. Micro servo motors are lightweight, compact, and offer reasonable precision and control for their size.

These are some of the different types of servo motors available, each catering to specific applications and requirements. The choice of servo motor type depends on factors such as the desired performance, accuracy, power requirements, environmental conditions, and cost considerations. Understanding the differences between servo motor types is essential for selecting the most suitable motor for a particular application.

servo motor

How does feedback control work in a servo motor system?

In a servo motor system, feedback control plays a crucial role in achieving precise control over the motor’s position, speed, and acceleration. The feedback control loop consists of several components that work together to continuously monitor and adjust the motor’s behavior based on the desired and actual position information. Here’s an overview of how feedback control works in a servo motor system:

1. Position Reference:

The servo motor system starts with a position reference or a desired position. This can be specified by a user or a control system, depending on the application requirements. The position reference represents the target position that the servo motor needs to reach and maintain.

2. Feedback Sensor:

A feedback sensor, such as an encoder or resolver, is attached to the servo motor’s shaft. The purpose of the feedback sensor is to continuously measure the motor’s actual position and provide feedback to the control system. The sensor generates signals that indicate the motor’s current position, allowing the control system to compare it with the desired position.

3. Control System:

The control system receives the position reference and the feedback signals from the sensor. It processes this information to determine the motor’s current position error, which is the difference between the desired position and the actual position. The control system calculates the required adjustments to minimize this position error and bring the motor closer to the desired position.

4. Controller:

The controller is a key component of the feedback control loop. It receives the position error from the control system and generates control signals that govern the motor’s behavior. The controller adjusts the motor’s inputs, such as voltage or current, based on the position error and control algorithm. The control algorithm can be implemented using various techniques, such as proportional-integral-derivative (PID) control, which adjusts the motor’s inputs based on the current error, the integral of past errors, and the rate of change of errors.

5. Motor Drive:

The control signals generated by the controller are sent to the motor drive unit, which amplifies and converts these signals into appropriate voltage or current levels. The motor drive unit provides the necessary power and control signals to the servo motor to initiate the desired motion. The drive unit adjusts the motor’s inputs based on the control signals to achieve the desired position, speed, and acceleration specified by the control system.

6. Motor Response:

As the motor receives the adjusted inputs from the motor drive, it starts to rotate and move towards the desired position. The motor’s response is continually monitored by the feedback sensor, which measures the actual position in real-time.

7. Feedback Comparison:

The feedback sensor compares the actual position with the desired position. If there is any deviation, the sensor generates feedback signals reflecting the discrepancy between the desired and actual positions. These signals are fed back to the control system, allowing it to recalculate the position error and generate updated control signals to further adjust the motor’s behavior.

This feedback loop continues to operate in a continuous cycle, with the control system adjusting the motor’s inputs based on the feedback information. As a result, the servo motor can accurately track and maintain the desired position, compensating for any disturbances or variations that may occur during operation.

In summary, feedback control in a servo motor system involves continuously comparing the desired position with the actual position using a feedback sensor. The control system processes this position error and generates control signals, which are converted and amplified by the motor drive unit to drive the motor. The motor’s response is monitored by the feedback sensor, and any discrepancies are fed back to the control system, enabling it to make further adjustments. This closed-loop control mechanism ensures precise positioning and accurate control of the servo motor.

China Professional 1.5kw 2500rpm Hot Sales Three Phase Brushless AC Electric Servo Motor Sgm7g-20afs61   with Best Sales China Professional 1.5kw 2500rpm Hot Sales Three Phase Brushless AC Electric Servo Motor Sgm7g-20afs61   with Best Sales
editor by CX 2024-02-08

China factory Multiple Mode Permanent Magnet Electric AC Servo Motor for Robotic Sgm7j-04afc6s Replacement with high quality

Product Description

Blue Equator Intelligent Equipment Co., Ltd. is a professional R & D, production, sales of servo system and control system, energy storage system and other related products of comprehensive solutions provider.

Pre-delivery Inspection

We have a strict quality inspection process, all products before the packaging to go through strict performance and quality testing, to ensure that each product is qualified.

Inventory & Distribution

Our company has a professional product storage base, which is the guarantee of continuous supply of goods throughout our supply chain. Warehouse products are complete, stacked neatly. Daily inventory of products out of the warehouse to ensure the accurate quantity of goods. At present, all the released goods have been fully stocked, please new and old customers rest assured to buy, we will be the fastest speed to deliver the goods to you. (except for special edition products)

Packing & Shipping
 

We have extensive experience in the export business and have cooperated with many international trading companies. Cooperating express companies such as DHL, fedex, UPS, etc., we can arrange the transportation mode according to the transportation requirements of customers.

Before transportation, we will package the products according to the needs of customers and the packaging and transportation requirements of export products. According to the type and characteristics of the product, we will choose the appropriate packaging materials to protect the product and prevent damage to the product due to vibration, bump and other factors during transportation.

Global Sales & Technical Services

Our professional team provides you with a full range of services, covering the world, and is ready to answer all your questions.

 
FAQ  
                                                                                                                                                                                                                                                                   

Q1. How long is the delivery time? 
A1. We’ll arrange the delivery after you order, the estimated production time will be around 7-15 days, from the receipt of order. Shipping normally takes 7-25 working days. 

Q2. Are you trading company or manufacturer?
A2. Yes, we are manufacturer, we have our own factory.

Q3. Can I test sample?
A3. Yes, sample charged can be offered for testing.
 
Q4. Can we be agent or distributor?
A4. Yes, welcome and we will support you.

Q5. How about the after services and technical support?
A5. We offer 24h customer service for you. In addition to existing products, we can also offer other technical products according to your needs, the technical supports are free.

Q6. How about the shippment?
A6. We can ship goods by express, such as DHL, FedEx, UPS, CDEK, ARAMEX, and by train, by ship.

Q7. How about warranty?
A7.  We supply all products with 12 month warranty.

Q8. How about the Payment?
A8. We accept T/T, Paypal, this is negotiable. 

Q9. Could you send me a price list?
A9. For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.        
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 70/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

Are there common issues or challenges associated with servo motor systems, and how can they be addressed?

Servo motor systems are widely used in various applications, but they can encounter common issues or challenges that affect their performance and reliability. Let’s explore some of these issues and discuss potential solutions:

1. Positioning and Tracking Errors:

One common challenge in servo motor systems is positioning and tracking errors. These errors can occur due to factors such as mechanical backlash, encoder resolution limitations, or disturbances in the system. To address this issue, careful calibration and tuning of the servo control system are necessary. This includes adjusting feedback gains, implementing feedback filtering techniques, and utilizing advanced control algorithms to improve the system’s accuracy and minimize errors. Additionally, employing high-resolution encoders and backlash compensation mechanisms can help enhance the positioning and tracking performance.

2. Vibration and Resonance:

Vibration and resonance can impact the performance of servo motor systems, leading to reduced accuracy and stability. These issues can arise from mechanical resonances within the system or external disturbances. To mitigate vibration and resonance problems, it is crucial to analyze the system’s dynamics and identify critical resonant frequencies. Implementing vibration dampening techniques such as mechanical isolation, using vibration-absorbing materials, or employing active vibration control methods can help minimize the effect of vibrations and improve the system’s performance.

3. Overheating and Thermal Management:

Servo motors can generate heat during operation, and inadequate thermal management can lead to overheating and potential performance degradation. To address this issue, proper cooling and thermal management techniques should be employed. This may involve using heat sinks, fans, or liquid cooling systems to dissipate heat efficiently. Ensuring adequate ventilation and airflow around the motor and avoiding excessive current or overloading can also help prevent overheating. Monitoring the motor’s temperature and implementing temperature protection mechanisms can further safeguard the motor from thermal damage.

4. Electrical Noise and Interference:

Electrical noise and interference can affect the performance and reliability of servo motor systems. These issues can arise from electromagnetic interference (EMI) or radio frequency interference (RFI) from nearby equipment or electrical sources. To mitigate electrical noise, proper shielding and grounding techniques should be employed. Using shielded cables, ferrite cores, and grounding the motor and control system can help minimize the impact of noise and interference. Additionally, employing filtering techniques and surge protection devices can further improve system robustness against electrical disturbances.

5. System Integration and Compatibility:

Integrating a servo motor system into a larger control system or automation setup can present challenges in terms of compatibility and communication. Ensuring proper compatibility between the servo motor and the control system is crucial. This involves selecting appropriate communication protocols, such as EtherCAT or Modbus, and ensuring compatibility with the control signals and interfaces. Employing standardized communication interfaces and protocols can facilitate seamless integration and interoperability. Additionally, thorough testing and verification of the system’s compatibility before deployment can help identify and address any integration issues.

6. Maintenance and Service:

Maintenance and service requirements are important considerations for servo motor systems. Regular maintenance, including lubrication, inspection, and cleaning, can help prevent issues related to wear and tear. Following manufacturer-recommended maintenance schedules and procedures is essential to ensure the longevity and optimal performance of the motor. In case of any malfunctions or failures, having access to technical support from the manufacturer or trained service personnel can help diagnose and address problems effectively.

By being aware of these common issues and challenges associated with servo motor systems and implementing appropriate solutions, it is possible to enhance the performance, reliability, and lifespan of the servo motor system. Regular monitoring, proactive maintenance, and continuous improvement can contribute to optimizing the overall operation and efficiency of the system.

servo motor

How is the size of a servo motor determined based on application requirements?

The size of a servo motor is an important consideration when selecting a motor for a specific application. The size of the motor is determined based on various factors related to the application requirements. Let’s explore how the size of a servo motor is determined:

1. Torque Requirements:

One of the primary factors in determining the size of a servo motor is the torque requirements of the application. The motor should be able to generate sufficient torque to handle the load and overcome any resistance or friction in the system. The required torque depends on factors such as the weight of the load, the distance from the motor’s axis of rotation, and any additional forces acting on the system. By analyzing the torque requirements, one can select a servo motor with an appropriate size and torque rating to meet the application’s needs.

2. Speed and Acceleration Requirements:

The desired speed and acceleration capabilities of the application also influence the size of the servo motor. Different applications have varying speed and acceleration requirements, and the motor needs to be capable of achieving the desired performance. Higher speeds and accelerations may require larger motors with more powerful components to handle the increased forces and stresses. By considering the required speed and acceleration, one can determine the size of the motor that can meet these demands.

3. Inertia and Load Inertia Ratio:

The inertia of the load and the inertia ratio between the load and the servo motor are important considerations in sizing the motor. Inertia refers to the resistance of an object to changes in its rotational motion. If the load has a high inertia, it requires a servo motor with sufficient size and torque to accelerate and decelerate the load effectively. The inertia ratio, which is the ratio of the load inertia to the motor inertia, affects the motor’s ability to control the load’s motion accurately. A proper balance between the load and motor inertia is necessary to achieve optimal performance and stability in the system.

4. Duty Cycle and Continuous Operation:

The duty cycle and continuous operation requirements of the application also impact the motor size selection. Duty cycle refers to the ratio of the motor’s operating time to the total cycle time. Applications with high-duty cycles or continuous operation may require larger motors that can handle sustained operation without overheating or performance degradation. It is important to consider the motor’s continuous torque rating and thermal characteristics to ensure it can operate reliably under the given duty cycle requirements.

5. Physical Space Constraints:

The physical space available for installing the servo motor is another factor to consider. The motor’s dimensions should fit within the available space, considering factors such as motor length, diameter, and any mounting requirements. It is essential to ensure that the chosen motor can be easily integrated into the system without interfering with other components or causing space constraints.

6. Weight Limitations:

The weight limitations of the application may influence the motor size selection. If there are weight restrictions, such as in mobile or lightweight applications, it is necessary to choose a servo motor that is compact and lightweight while still providing the required performance. Lighter servo motors can help optimize the overall weight and balance of the system.

7. Cost Considerations:

Cost is also a factor to consider when determining the size of a servo motor. Larger motors with higher torque and performance capabilities tend to be more expensive. It is important to strike a balance between the required performance and the cost constraints of the application. Analyzing the cost-effectiveness and overall value of the motor in relation to the application requirements is essential.

By considering these factors, one can determine the appropriate size of a servo motor that can meet the specific application requirements. It is advisable to consult with manufacturers or experts in the field to ensure the chosen motor size aligns with the application needs and provides optimal performance and reliability.

servo motor

What is a servo motor, and how does it function in automation systems?

A servo motor is a type of motor specifically designed for precise control of angular or linear position, velocity, and acceleration. It is widely used in various automation systems where accurate motion control is required. Let’s explore the concept of servo motors and how they function in automation systems:

A servo motor consists of a motor, a position feedback device (such as an encoder or resolver), and a control system. The control system receives input signals, typically in the form of electrical pulses or analog signals, indicating the desired position or speed. Based on these signals and the feedback from the position sensor, the control system adjusts the motor’s operation to achieve the desired motion.

The functioning of a servo motor in an automation system involves the following steps:

  1. Signal Input: The automation system provides a control signal to the servo motor, indicating the desired position, speed, or other motion parameters. This signal can be generated by a human operator, a computer, a programmable logic controller (PLC), or other control devices.
  2. Feedback System: The servo motor incorporates a position feedback device, such as an encoder or resolver, which continuously monitors the motor’s actual position. This feedback information is sent back to the control system, allowing it to compare the actual position with the desired position specified by the input signal.
  3. Control System: The control system, typically housed within the servo motor or an external servo drive, receives the input signal and the feedback from the position sensor. It processes this information and generates the appropriate control signals to the motor.
  4. Motor Operation: Based on the control signals received from the control system, the servo motor adjusts its operation to achieve the desired motion. The control system varies the motor’s voltage, current, or frequency to control the motor’s speed, torque, or position accurately.
  5. Closed-Loop Control: Servo motors operate in a closed-loop control system. The feedback information from the position sensor allows the control system to continuously monitor and adjust the motor’s operation to minimize any deviation between the desired position and the actual position. This closed-loop control mechanism provides high accuracy, repeatability, and responsiveness in motion control applications.

One of the key advantages of servo motors in automation systems is their ability to provide precise and dynamic motion control. They can rapidly accelerate, decelerate, and change direction with high accuracy, allowing for intricate and complex movements. Servo motors are widely used in applications such as robotics, CNC machines, printing presses, packaging equipment, and automated manufacturing systems.

In summary, a servo motor is a specialized motor that enables accurate control of position, velocity, and acceleration in automation systems. Through the combination of a control system and a position feedback device, servo motors can precisely adjust their operation to achieve the desired motion. Their closed-loop control mechanism and high responsiveness make them an essential component in various applications requiring precise and dynamic motion control.

China factory Multiple Mode Permanent Magnet Electric AC Servo Motor for Robotic Sgm7j-04afc6s Replacement   with high quality China factory Multiple Mode Permanent Magnet Electric AC Servo Motor for Robotic Sgm7j-04afc6s Replacement   with high quality
editor by CX 2024-02-06

China factory 1.5kw 2500rpm Hot Sales Three Phase Brushless AC Electric Servo Motor Sgm7g-20afs61 vacuum pump and compressor

Product Description

Blue Equator Intelligent Equipment Co., Ltd. is a professional R & D, production, sales of servo system and control system, energy storage system and other related products of comprehensive solutions provider.

Pre-delivery Inspection

We have a strict quality inspection process, all products before the packaging to go through strict performance and quality testing, to ensure that each product is qualified.

Inventory & Distribution

Our company has a professional product storage base, which is the guarantee of continuous supply of goods throughout our supply chain. Warehouse products are complete, stacked neatly. Daily inventory of products out of the warehouse to ensure the accurate quantity of goods. At present, all the released goods have been fully stocked, please new and old customers rest assured to buy, we will be the fastest speed to deliver the goods to you. (except for special edition products).

Packing & Shipping
 

We have extensive experience in the export business and have cooperated with many international trading companies. Cooperating express companies such as DHL, fedex, UPS, etc., we can arrange the transportation mode according to the transportation requirements of customers.

Before transportation, we will package the products according to the needs of customers and the packaging and transportation requirements of export products. According to the type and characteristics of the product, we will choose the appropriate packaging materials to protect the product and prevent damage to the product due to vibration, bump and other factors during transportation.

Global Sales & Technical Services

Our professional team provides you with a full range of services, covering the world, and is ready to answer all your questions.

FAQ  
                                                                                                                                                                                                                                                                   

Q1. How long is the delivery time? 
A1. We’ll arrange the delivery after you order, the estimated production time will be around 7-15 days, from the receipt of order. Shipping normally takes 7-25 working days. 

Q2. Are you trading company or manufacturer?
A2. Yes, we are manufacturer, we have our own factory.

Q3. Can I test sample?
A3. Yes, sample charged can be offered for testing.
 
Q4. Can we be agent or distributor?
A4. Yes, welcome and we will support you.

Q5. How about the after services and technical support?
A5. We offer 24h customer service for you. In addition to existing products, we can also offer other technical products according to your needs, the technical supports are free.

Q6. How about the shippment?
A6. We can ship goods by express, such as DHL, FedEx, UPS, CDEK, ARAMEX, and by train, by ship.

Q7. How about warranty?
A7.  We supply all products with 12 month warranty.

Q8. How about the Payment?
A8. We accept T/T, Paypal, this is negotiable.         

Q9. Could you send me a price list?
A9. For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 266/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

What maintenance practices are recommended for ensuring the longevity of servo motors?

Maintaining servo motors properly is crucial to ensure their longevity and reliable performance. Here are some recommended maintenance practices:

1. Regular Cleaning:

Regularly clean the servo motor to remove dust, debris, and other contaminants that can affect its performance. Use a soft brush or compressed air to clean the motor’s exterior and ventilation ports. Avoid using excessive force or liquid cleaners that could damage the motor.

2. Lubrication:

Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant for the motor. Lubricate the motor’s bearings, gears, and other moving parts as per the specified schedule. Proper lubrication reduces friction, minimizes wear, and helps maintain optimal performance.

3. Inspections:

Regularly inspect the servo motor for signs of wear, damage, or loose connections. Check for any unusual noises, vibrations, or overheating during operation, as these can indicate potential issues. If any abnormalities are detected, consult the manufacturer’s documentation or seek professional assistance for further evaluation and repair.

4. Electrical Connections:

Ensure that all electrical connections to the servo motor, such as power cables and signal wires, are secure and properly insulated. Loose or damaged connections can lead to electrical problems, voltage fluctuations, or signal interference, which can affect the motor’s performance and longevity.

5. Environmental Considerations:

Take into account the operating environment of the servo motor. Ensure that the motor is protected from excessive moisture, dust, extreme temperatures, and corrosive substances. If necessary, use appropriate enclosures or protective measures to safeguard the motor from adverse environmental conditions.

6. Software and Firmware Updates:

Stay updated with the latest software and firmware releases provided by the servo motor manufacturer. These updates often include bug fixes, performance enhancements, and new features that can improve the motor’s functionality and reliability. Follow the manufacturer’s instructions for safely updating the motor’s software or firmware.

7. Training and Documentation:

Ensure that personnel responsible for the maintenance of servo motors are properly trained and familiar with the manufacturer’s guidelines and documentation. This includes understanding recommended maintenance procedures, safety precautions, and troubleshooting techniques. Regular training and access to up-to-date documentation are essential for effective servo motor maintenance.

8. Professional Servicing:

If a servo motor requires complex repairs or servicing beyond regular maintenance, it is advisable to consult a qualified technician or contact the manufacturer’s service center. Attempting to repair or modify the motor without proper expertise can lead to further damage or safety hazards.

By following these maintenance practices, servo motors can operate optimally and have an extended lifespan. Regular cleaning, lubrication, inspections, secure electrical connections, environmental considerations, software updates, training, and professional servicing all contribute to ensuring the longevity and reliable performance of servo motors.

servo motor

Can you explain the concept of torque and speed in relation to servo motors?

Torque and speed are two essential parameters in understanding the performance characteristics of servo motors. Let’s explore these concepts in relation to servo motors:

Torque:

Torque refers to the rotational force produced by a servo motor. It determines the motor’s ability to generate rotational motion and overcome resistance or load. Torque is typically measured in units of force multiplied by distance, such as Nm (Newton-meter) or oz-in (ounce-inch).

The torque output of a servo motor is crucial in applications where the motor needs to move or control a load. The motor must provide enough torque to overcome the resistance or friction in the system and maintain the desired position or motion. Higher torque allows the motor to handle heavier loads or more challenging operating conditions.

It is important to note that the torque characteristics of a servo motor may vary depending on the speed or position of the motor. Manufacturers often provide torque-speed curves or torque-position curves, which illustrate the motor’s torque capabilities at different operating points. Understanding these curves helps in selecting a servo motor that can deliver the required torque for a specific application.

Speed:

Speed refers to the rotational velocity at which a servo motor operates. It indicates how fast the motor can rotate and how quickly it can achieve the desired position or motion. Speed is typically measured in units of revolutions per minute (RPM) or radians per second (rad/s).

The speed of a servo motor is crucial in applications that require rapid movements or high-speed operations. It determines the motor’s responsiveness and the system’s overall performance. Different servo motors have different speed capabilities, and the maximum achievable speed is often specified by the manufacturer.

It is worth noting that the speed of a servo motor may also affect its torque output. Some servo motors exhibit a phenomenon known as “speed-torque curve,” where the motor’s torque decreases as the speed increases. This behavior is influenced by factors such as motor design, winding resistance, and control algorithms. Understanding the speed-torque characteristics of a servo motor is important for selecting a motor that can meet the speed requirements of the application while maintaining sufficient torque.

Overall, torque and speed are interrelated parameters that determine the performance capabilities of a servo motor. The torque capability determines the motor’s ability to handle loads, while the speed capability determines how quickly the motor can achieve the desired motion. When selecting a servo motor, it is essential to consider both the torque and speed requirements of the application to ensure that the motor can deliver the desired performance.

servo motor

How does feedback control work in a servo motor system?

In a servo motor system, feedback control plays a crucial role in achieving precise control over the motor’s position, speed, and acceleration. The feedback control loop consists of several components that work together to continuously monitor and adjust the motor’s behavior based on the desired and actual position information. Here’s an overview of how feedback control works in a servo motor system:

1. Position Reference:

The servo motor system starts with a position reference or a desired position. This can be specified by a user or a control system, depending on the application requirements. The position reference represents the target position that the servo motor needs to reach and maintain.

2. Feedback Sensor:

A feedback sensor, such as an encoder or resolver, is attached to the servo motor’s shaft. The purpose of the feedback sensor is to continuously measure the motor’s actual position and provide feedback to the control system. The sensor generates signals that indicate the motor’s current position, allowing the control system to compare it with the desired position.

3. Control System:

The control system receives the position reference and the feedback signals from the sensor. It processes this information to determine the motor’s current position error, which is the difference between the desired position and the actual position. The control system calculates the required adjustments to minimize this position error and bring the motor closer to the desired position.

4. Controller:

The controller is a key component of the feedback control loop. It receives the position error from the control system and generates control signals that govern the motor’s behavior. The controller adjusts the motor’s inputs, such as voltage or current, based on the position error and control algorithm. The control algorithm can be implemented using various techniques, such as proportional-integral-derivative (PID) control, which adjusts the motor’s inputs based on the current error, the integral of past errors, and the rate of change of errors.

5. Motor Drive:

The control signals generated by the controller are sent to the motor drive unit, which amplifies and converts these signals into appropriate voltage or current levels. The motor drive unit provides the necessary power and control signals to the servo motor to initiate the desired motion. The drive unit adjusts the motor’s inputs based on the control signals to achieve the desired position, speed, and acceleration specified by the control system.

6. Motor Response:

As the motor receives the adjusted inputs from the motor drive, it starts to rotate and move towards the desired position. The motor’s response is continually monitored by the feedback sensor, which measures the actual position in real-time.

7. Feedback Comparison:

The feedback sensor compares the actual position with the desired position. If there is any deviation, the sensor generates feedback signals reflecting the discrepancy between the desired and actual positions. These signals are fed back to the control system, allowing it to recalculate the position error and generate updated control signals to further adjust the motor’s behavior.

This feedback loop continues to operate in a continuous cycle, with the control system adjusting the motor’s inputs based on the feedback information. As a result, the servo motor can accurately track and maintain the desired position, compensating for any disturbances or variations that may occur during operation.

In summary, feedback control in a servo motor system involves continuously comparing the desired position with the actual position using a feedback sensor. The control system processes this position error and generates control signals, which are converted and amplified by the motor drive unit to drive the motor. The motor’s response is monitored by the feedback sensor, and any discrepancies are fed back to the control system, enabling it to make further adjustments. This closed-loop control mechanism ensures precise positioning and accurate control of the servo motor.

China factory 1.5kw 2500rpm Hot Sales Three Phase Brushless AC Electric Servo Motor Sgm7g-20afs61   vacuum pump and compressor	China factory 1.5kw 2500rpm Hot Sales Three Phase Brushless AC Electric Servo Motor Sgm7g-20afs61   vacuum pump and compressor
editor by CX 2024-01-19