China manufacturer MID-Speed Wedm Machine Lk-800s CNC Machine AC Servo Motor vacuum pump and compressor

Product Description

1.technical parameter (Scarlet data are different for each item.)

 Performance of the whole machine   Equipment type unit LK-8/8822 0571 6kpa

                 
2.Equipment accessories

machine S/N name Comment manufacture  
Fuselage part 1 body Quality 250 Resin Sand Casting China  
2 X.Y Axis Screw Precision ball screw ZheJiang  
3 X-axis and Y-axis guideways Precision linear guide TBI  
4 Fuel injection pump Computer Auto. China  
5 Xihu (West Lake) Dis. wheel Thickened Gemstone Xihu (West Lake) Dis. Wheel domestic  
6 Ruby guide nozzle patented product domestic  
7 reversing switch Omron Japan
 
 
8 Filtration system Filtration mode of slow filament  Longkai  
Power supply part 9 Power Control Cabinet High Performance Control Power Supply Medium wire system  
10 industrial control computer  Fan-free dual-core CPU (4 threads) Longkai  
11 Industrial Display Screen Youda ZheJiang  
12 AC servo motor Panasonic Japan  
13 AC Servo Motor Driver Panasonic Japan  
14 relay Omron Japan  
15 Contactor Imported France  

3. Documents

S/N name QTY  unit P.S.
1 Medium speed machine 1    
2 NC control cabinet 1    
3 Filtration tank 1    
4 Packing Technical Documents 1        
5 Hold-all 1    

4.Long-life moving parts:
1.The X, Y and Z axes are all equipped with high precision ball screw and imported rolling linear guide, which can run smoothly and keep the accuracy of the machine tool.
2,Imported bearings are used in all moving bearings of machine , so that the reliability and durability of machine tool processing accuracy are higher and the long-term interests of customers are guaranteed.
3.The guide nozzle adopts the design of slow-moving wire. The UV axis is fixed and the guide nozzle can rise and fall automatically, so that it can be as close as possible to the workpiece’s machined surface, prevent the molybdenum wire from shaking again, avoid the line marks on the cutting surface, and greatly improve the accuracy and roughness of the machined surface.
4The tightening system uses two-way automatic tightening device to tighten molybdenum wire in real time. The unevenness and accuracy of the processing plane caused by the inappropriate tightness of molybdenum wire in the process of processing are thoroughly solved.
The guide wheel adopts specially made gem guide wheel and customized sprinkler plate. Replacement can automatically return to the origin, greatly reducing the difficulty of replacing vulnerable parts, and facilitating the use of customers.
6.The imported linear guide rail and the imported switch are used for the barrel guide rail and the commutation switch to ensure the stability, high precision and long-term reliability of the barrel at high and low speeds.
Main Characteristics of  Servo WEDM machine
1,Graphic driving technology reduces the labor intensity of workers, improves the efficiency of workers, and reduces the chance of misoperation.
2,For users of Windows XP and other versions, the software is easy to use, that is to say, learning is learning.
3,Directly embedded in AutoCAD, NCCAD, CAXA and other versions of software, the integration of CAD/CAM is realized, and the machinable object of WEDM is expanded.
4,Four-axis linkage control technology is used in the processing of taper workpiece; three-dimensional design of processing trajectory; and compensation of guide wheel radius, wire diameter, unilateral discharge gap and elliptical error of large taper to eliminate the theoretical error of taper processing;
5.With multi-card parallel technology, 1 computer can control multiple WEDM machines at the same time.
6,It can carry out multiple cutting, with the function of user-maintained process library, intelligently control the processing speed and parameters, so as to improve the surface finish and dimensional accuracy, and make multiple processing simple and reliable.
7,This software optimizes the processing of super-thick workpiece (more than 1 meter) to make its tracking stable and reliable.
8,Connection network management: In order to facilitate the operation of 1 person and multiple computers, drawing input and export, equipment can realize network connection.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Metal
Process Usage: Metal-Cutting CNC Machine Tools, CNC Non-Conventional Machine Tools, Metal-Forming CNC Machine Tools
Movement Method: Linear Control
Control Method: Semi-Closed Loop Control
Numerical Control: CNC/MNC
Processing Precision: 0.001-0.005mm
Customization:
Available

|

servo motor

How are servo motors used in CNC machines and other precision machining equipment?

Servo motors play a crucial role in CNC (Computer Numerical Control) machines and other precision machining equipment. They provide precise and dynamic control over the movement of various axes, enabling high-accuracy positioning, rapid speed changes, and smooth motion profiles. Here’s a detailed explanation of how servo motors are used in CNC machines and precision machining equipment:

1. Axis Control:

CNC machines typically have multiple axes, such as X, Y, and Z for linear movements, as well as rotary axes for rotational movements. Servo motors are employed to drive each axis, converting electrical signals from the CNC controller into mechanical motion. The position, velocity, and acceleration of the servo motors are precisely controlled to achieve accurate and repeatable positioning of the machine’s tool or workpiece.

2. Feedback and Closed-Loop Control:

Servo motors in CNC machines are equipped with feedback devices, such as encoders or resolvers, to provide real-time information about the motor’s actual position. This feedback is used in a closed-loop control system, where the CNC controller continuously compares the desired position with the actual position and adjusts the motor’s control signals accordingly. This closed-loop control ensures accurate positioning and compensates for any errors, such as mechanical backlash or load variations.

3. Rapid and Precise Speed Changes:

Servo motors offer excellent dynamic response, allowing CNC machines to achieve rapid and precise speed changes during machining operations. By adjusting the control signals to the servo motors, the CNC controller can smoothly accelerate or decelerate the machine’s axes, resulting in efficient machining processes and reduced cycle times.

4. Contouring and Path Tracing:

CNC machines often perform complex machining tasks, such as contouring or following intricate paths. Servo motors enable precise path tracing by accurately controlling the position and velocity of the machine’s tool along the programmed path. This capability is crucial for producing intricate shapes, smooth curves, and intricate details with high precision.

5. Spindle Control:

In addition to axis control, servo motors are also used to control the spindle in CNC machines. The spindle motor, typically a servo motor, rotates the cutting tool or workpiece at the desired speed. Servo control ensures precise speed and torque control, allowing for optimal cutting conditions and surface finish quality.

6. Tool Changers and Automatic Tool Compensation:

CNC machines often feature automatic tool changers to switch between different cutting tools during machining operations. Servo motors are utilized to precisely position the tool changer mechanism, enabling quick and accurate tool changes. Additionally, servo motors can be used for automatic tool compensation, adjusting the tool’s position or orientation to compensate for wear, tool length variations, or tool offsets.

7. Synchronized Motion and Multi-Axis Coordination:

Servo motors enable synchronized motion and coordination between multiple axes in CNC machines. By precisely controlling the servo motors on different axes, complex machining operations involving simultaneous movements can be achieved. This capability is vital for tasks such as 3D contouring, thread cutting, and multi-axis machining.

In summary, servo motors are integral components of CNC machines and precision machining equipment. They provide accurate and dynamic control over the machine’s axes, enabling high-precision positioning, rapid speed changes, contouring, spindle control, tool changers, and multi-axis coordination. The combination of servo motor technology and CNC control systems allows for precise, efficient, and versatile machining operations in various industries.

servo motor

What factors should be considered when selecting a servo motor for a specific application?

When selecting a servo motor for a specific application, several factors need to be considered. These factors help ensure that the chosen servo motor meets the requirements and performs optimally in the intended application. Here are some key factors to consider:

1. Torque and Power Requirements:

One of the primary considerations is the torque and power requirements of the application. The servo motor should be able to generate sufficient torque to handle the load and overcome any resistance or friction in the system. Additionally, the power rating of the motor should match the power supply available in the application. It is essential to evaluate the torque-speed characteristics of the servo motor to ensure it can deliver the required performance.

2. Speed and Acceleration:

The required speed and acceleration capabilities of the servo motor should align with the application’s needs. Different applications have varying speed and acceleration requirements, and the servo motor should be able to meet these demands. It is crucial to consider both the maximum speed that the motor can achieve and the time it takes to accelerate or decelerate to specific speeds. Evaluating the servo motor’s speed-torque characteristics and acceleration capabilities is necessary for selecting the right motor.

3. Positioning Accuracy and Repeatability:

The desired positioning accuracy and repeatability of the application play a significant role in servo motor selection. If precise positioning is crucial, a servo motor with high accuracy and low positioning errors should be chosen. The feedback mechanism, such as encoders or resolvers, should provide the required resolution to achieve the desired accuracy. Repeatability, the ability to consistently reach the same position, should also be considered, especially in applications where repetitive movements are necessary.

4. Environmental Conditions:

The environmental conditions in which the servo motor will operate should be taken into account. Factors such as temperature extremes, humidity, dust, and vibration can affect the motor’s performance and lifespan. In harsh environments, it may be necessary to choose a servo motor with appropriate protection ratings, such as IP (Ingress Protection) ratings, to ensure reliable operation and longevity.

5. Control System Compatibility:

The compatibility of the servo motor with the control system used in the application is crucial. The motor should be compatible with the control signals and communication protocols employed in the system. This includes considerations such as voltage compatibility, control signal types (analog, digital, pulse), and communication interfaces (such as Ethernet, CAN, or Modbus). Ensuring compatibility will facilitate seamless integration and efficient control of the servo motor within the application.

6. Size and Weight Constraints:

The physical size and weight limitations of the application should be considered when selecting a servo motor. The motor’s dimensions should fit within the available space, and its weight should not exceed the application’s weight capacity. Compact and lightweight servo motors may be preferred in applications where space is limited or weight is a critical factor.

7. Cost Considerations:

The cost of the servo motor and its overall value for the application should be evaluated. It is essential to consider the initial purchase cost as well as the long-term maintenance and operational costs. While cost is a factor, it should not be the sole determining factor, as compromising on quality or performance may lead to suboptimal results.

By considering these factors, one can make an informed decision when selecting a servo motor for a specific application. It is recommended to consult with manufacturers or experts in the field to ensure the chosen servo motor meets the application’s requirements and provides reliable and efficient performance.

servo motor

In which industries are servo motors commonly used, and what applications do they serve?

Servo motors are widely used across various industries due to their precise control capabilities and ability to deliver high torque at different speeds. Here are some industries where servo motors are commonly employed, along with their applications:

1. Robotics:

Servo motors are extensively used in robotics to control the movement of robotic limbs and joints. They enable precise positioning and accurate control, allowing robots to perform tasks with high accuracy and repeatability. Servo motors are also employed in humanoid robots, industrial manipulators, and collaborative robots (cobots).

2. Manufacturing and Automation:

In manufacturing and automation industries, servo motors are used in various applications such as conveyor systems, pick-and-place machines, packaging equipment, and assembly lines. Servo motors provide precise control over the movement of components, ensuring accurate positioning, fast response times, and high throughput.

3. CNC Machining:

Servo motors play a vital role in computer numerical control (CNC) machines, where they control the movement of axes (e.g., X, Y, and Z). These motors enable precise and smooth motion, allowing CNC machines to accurately shape and cut materials such as metal, wood, and plastics. Servo motors are also used in CNC routers, milling machines, lathes, and laser cutting equipment.

4. Aerospace and Aviation:

Servo motors find applications in the aerospace and aviation industries, particularly in flight control systems. They are used to control the movement of aircraft surfaces, such as ailerons, elevators, rudders, and flaps. Servo motors ensure precise and responsive control, contributing to the stability and maneuverability of aircraft.

5. Medical Devices:

In the medical field, servo motors are used in various devices and equipment. They are employed in robotic surgery systems, prosthetics, exoskeletons, infusion pumps, diagnostic equipment, and laboratory automation. Servo motors enable precise and controlled movements required for surgical procedures, rehabilitation, and diagnostic tests.

6. Automotive:

Servo motors have several applications in the automotive industry. They are used in electric power steering systems, throttle control, braking systems, and active suspension systems. Servo motors provide accurate control over steering, acceleration, and braking, enhancing vehicle safety and performance.

7. Entertainment and Motion Control:

Servo motors are widely used in the entertainment industry for animatronics, special effects, and motion control systems. They enable realistic movements of animatronic characters, robotic props, and camera rigs in film, television, and theme park attractions. Servo motors also find applications in motion simulators, gaming peripherals, and virtual reality systems.

In addition to these industries, servo motors are utilized in various other fields, including industrial automation, renewable energy systems, textile machinery, printing and packaging, and scientific research.

Overall, servo motors are versatile components that find widespread use in industries requiring precise motion control, accurate positioning, and high torque output. Their applications span across robotics, manufacturing, CNC machining, aerospace, medical devices, automotive, entertainment, and numerous other sectors.

China manufacturer MID-Speed Wedm Machine Lk-800s CNC Machine AC Servo Motor   vacuum pump and compressor	China manufacturer MID-Speed Wedm Machine Lk-800s CNC Machine AC Servo Motor   vacuum pump and compressor
editor by CX 2024-02-25