China Hot selling Full Series NEMA 11 14 17 23 24 34 42 Outboard Boat Servo DC Electric Hybrid Stepper Motor/Step/Stepping Motor with Reducer, Encoder and Other Devices manufacturer

Product Description

57 Closed-loop Stepper Motor

 We are a company specializing in the R&D, production and sales of brushless motors, stepper motors, DC motors.  Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

Product Description

57 Closed-loop Stepper Motor:

Projects Specifications
Temperature Rise under 80K
Resistance Accuracy ±10%
Inductance Accuracy ±20%
Ambient Temperature Range -10~ + 50°C
Ambient Humidity Range 20%RH – 90%RH
Insulation Resistance 100MΩMin.@500VDC
Insulation Class Class B 130°
Step Angle Accuracy ±5%
Shaft Radial Play 0.06Max.(450g-load)
Shaft Axial Runout 0.08Max.(450g-load)

57 Closed-loop Stepper Motor Parameters:

Model Current Resistance Inductance Rotational Inertia Holding torque Body Length Weight
A Ω mH g.cm2 N.M mm kg
57BHS78-D0821 3 0.7 3.6 200 1.2 78 0.9
57BHS98-D0821 4 1 4.4 480 2 98 1.35
57BHS122-D0821 4 1.2 1.1 550 2.8 122 1.85
57BHS134-D0821 4 1.5 2.8 600 3.2 134 1.95

Note: The above are standard parameters. Motor can be customized, brake ready, can be equipped with reducer, encoder and other devices.

Detailed Photos

57 Closed-loop Stepper Motor Photos:

Our Service:
1). General Service:

Quick Reply

All enquiry or email be replied in 12 hours, no delay for your business.

Professional Team

Questions about products will be replied professionally, exactly, best advice to you.

Short Lead time

Sample or small order sent in 7-15 days, bulk or customized order about 30 days.

Payment Choice

T/T, Western Union,, L/C, etc, easy for your business.

Before shipment

Take photos, send to customers for confirmation. Only confirmed, can be shipped out.

Language Choice

Besides English, you can use your own language by email, then we can translate it.

2). Customization Service:

Motor specification(no-load speed , voltage, torque , diameter, noise, life, testing) and shaft length can be tailor-made according to customer’s requirements.

Other Product Parameters

20 Series screw stepper Motor 1.8°(8H series) 

Model Current Resistance Inductance Rotational Inertia Holding torque| Body Length Weight
  A o mH g.cm2 N.M mm kg
20HS28-0504TS 0.5 14.3 8.o 1.6 0.018 28 0.05
2oHs30-0504Ts 0.5 11.5 1.7 1.8 0.02 30 0.06
20Hs33-0604TS 0.6 6.5 2.2 20 0.571 33 0.07
20Hs38-0604TS 0.6 10 5.5 3.2 0.044 38 0.08

28 Series screw stepper Motor 1.8°(11H series) 

Model Current Resistance Inductance Rotational Inertia Holding torque| Body Length Weight
  A o mH g.cm2 N.M mm kg
28HS32-0704Ts 0.7 5.6 3.4 9 o.09 32 0.11
28HS40-1004TS 1.o 4.1 3.1 11 0.13 40 0.13
28HS45-1004TS 1 3.8 3.3 12 0.15 45 0.14
28HS51-1004Ts 1 4.3 3.9 18 0.18 51 0.2

42HS Series step motor/stepping motor/stepper motor 1.8°(17H Series )

Model Current Resistance Inductance Rotational Inertia Holding torque Body Length Weight
  A o mH g.cm2 N.M mm kg
42HS34-1504 1.5 2.1 4.2 35 0.25 34 0.22
42HS40-1704 1.7 1.65 4.o 54 0.45 40 0.28
42HS48-1704 1.7 1.65 4.1 68 0.55 48 0.35
42HS60-1704 1.7 3 6 80 0.7 60 0.48

 42 Series screw stepper Motor 1.8°(17H series)

Model Current Resistance Inductance Rotational Inertia Holding torque| Body Length Weight
  A 2 mH g.cm2 N.M mm kg
42HS34-1504TS 1.5 2.1 4.2 35 0.25 34 0.22
42HS40-1704TS 1.7 1.65 4 54 0.45 40 0.28
42HS48-1704TS 1.7 1.65 4.1 68 0.55 48 0.35
42HS60-1704TS 1.7 3 6 80 0.70 60 0.48

 57 Series Stepper Motor 1.8°(23H series) 

Model Current Resistance Inductance Rotational Inertia Holding torque Body Length Weight
  A o mH g.cm2 N.M mm kg
57HS56-3004 3 0.7 3.6 200 1.2 56 0.7
57Hs76-4004 4 1.0 4.4 480 2 76 1.15
57Hs100-4004 4 1.2 1.1 550 2.8 100 1.65
57HS112-4004 4 1.5 2.8 600 3.2 112 1.75

 86 Series Stepper Motor 1.8°(34H series) 

Model Current Resistance Inductance Rotational Inertia Holding torque| Body Length Weight
  A o mH g.cm2 N.M mm kg
86Hs80-5004 5 0.65 7 1600 4.5 76 2.4
86HS10o-6004 6 0.50 11.6 2200 6.5 100 3.2
86HS118-6004 6 0.60 3.4 3200 8.5 118 4
86HS150-6004 6 0.7 6.3 4800 12 150 5.5

Application Area

Product Recommendation


Stepper motor Brushless motor Synchronous motor


Company Profile

HangZhou Sino-pan Electric Co., Ltd. is an export-oriented enterprise. Located in Xihu (West Lake) Dis. District, HangZhou City, ZheJiang Province, China. After years of operation, the scale of our enterprise has continued to expand. Gradually grow into a group company. At present, our company mainly produces automotive bulbs (such as halogen bulbs and automotive LED bulbs/as well as household LEDs and commercial LEDs), motors (brushless motors/stepping motors/synchronous motors/asynchronous motors). At the same time, we are also appointed by many clients as purchasing and quality inspection agents in China.

We provide you with high-quality, fast, efficient and inexpensive automotive lighting, motors and auxiliary electrical services. Zhongpan welcomes your patronage with a sHangZhou, and we will provide you with a variety of satisfactory products and a full range of consulting services. We firmly believe that the cooperation with us will be infinitely better! Strive to create a stronger tomorrow for our customers!


Packaging & Shipping



Q1. Can I provide sample orders for your products?
A: Of course, you can check our quality before ordering. If you have any requirements, please contact us.

Q2. What is your delivery time?
A: It depends on the order quantity. Usually, it takes about 3-7 days after receiving the small deposit. Bulk ordering takes 10-20 days.

Q3. What kind of customers and what kind of companies do you work with?
A: We have 20 years of export experience and serve more than 100 customers, such as retailers, wholesalers, and online store owners.

Q4. Is it possible to put our logo on your product or product packaging?
A: Of course, we have a factory, welcome to customize your brand, LOGO, color, product manual, packaging, etc. 

Q5: Can you OEM for me?
A: We accept all OEM orders, just contact us and give me your design. We will provide you with a reasonable price and make samples for you as soon as possible. 

Q6: What are your payment terms?
A: According to T/T, LC AT SIGHT, 30% deposit in advance, and the balance 70% before shipment.



Application: Industrial, Machine Tool, Universal
Speed: Variable Speed
Number of Stator: 2 Phase, 3 Phase, 4phase


.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.

about shipping cost and estimated delivery time.
Payment Method:


Initial Payment

Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

How does the cost of servo motors vary based on their specifications and features?

The cost of servo motors can vary significantly based on their specifications and features. Several factors influence the price of servo motors, and understanding these factors can help in selecting the most cost-effective option for a specific application. Let’s explore in detail how the cost of servo motors can vary:

1. Power Rating:

One of the primary factors affecting the cost of a servo motor is its power rating, which is typically measured in watts or kilowatts. Higher power-rated servo motors generally cost more than lower-rated ones due to the increased materials and manufacturing required to handle higher power levels. The power rating of a servo motor is determined by the torque and speed requirements of the application. Higher torque and speed capabilities often correspond to higher costs.

2. Torque and Speed:

The torque and speed capabilities of a servo motor directly impact its cost. Servo motors designed for high torque and high-speed applications tend to be more expensive due to the need for robust construction, specialized materials, and advanced control electronics. Motors with higher torque and speed ratings often require more powerful magnets, larger windings, and higher precision components, contributing to the increase in cost.

3. Frame Size:

The physical size or frame size of a servo motor also plays a role in determining its cost. Servo motors come in various frame sizes, such as NEMA (National Electrical Manufacturers Association) standard sizes in North America. Larger frame sizes generally command higher prices due to the increased materials and manufacturing complexity required to build larger motors. Smaller frame sizes, on the other hand, may be more cost-effective but may have limitations in terms of torque and speed capabilities.

4. Feedback Mechanism:

The feedback mechanism used in a servo motor affects its cost. Servo motors typically employ encoders or resolvers to provide feedback on the rotor position. Higher-resolution encoders or more advanced feedback technologies can increase the cost of the motor. For example, servo motors with absolute encoders, which provide position information even after power loss, tend to be more expensive than those with incremental encoders.

5. Control Features and Technology:

The control features and technology incorporated into a servo motor can influence its cost. Advanced servo motors may offer features such as built-in controllers, fieldbus communication interfaces, advanced motion control algorithms, or integrated safety functions. These additional features contribute to the cost of the motor but can provide added value and convenience in certain applications. Standard servo motors with basic control functionality may be more cost-effective for simpler applications.

6. Brand and Reputation:

The brand and reputation of the servo motor manufacturer can impact its cost. Established and reputable brands often command higher prices due to factors such as quality assurance, reliability, technical support, and extensive product warranties. While motors from less-known or generic brands may be more affordable, they may not offer the same level of performance, reliability, or long-term support.

7. Customization and Application-Specific Requirements:

If a servo motor needs to meet specific customization or application-specific requirements, such as specialized mounting options, environmental sealing, or compliance with industry standards, the cost may increase. Customization often involves additional engineering, design, and manufacturing efforts, which can lead to higher prices compared to off-the-shelf servo motors.

It’s important to note that the cost of a servo motor is not the sole indicator of its quality or suitability for a particular application. It is essential to carefully evaluate the motor’s specifications, features, and performance characteristics in relation to the application requirements to make an informed decision.

In summary, the cost of servo motors varies based on factors such as power rating, torque and speed capabilities, frame size, feedback mechanism, control features and technology, brand reputation, and customization requirements. By considering these factors and comparing different options, it is possible to select a servo motor that strikes the right balance between performance and cost-effectiveness for a specific application.

servo motor

Are there different types of servo motors, and how do they differ?

Yes, there are different types of servo motors available, each with its own characteristics and applications. The variations among servo motors can be attributed to factors such as construction, control mechanisms, power requirements, and performance specifications. Let’s explore some of the common types of servo motors and how they differ:

1. DC Servo Motors:

DC servo motors are widely used in various applications. They consist of a DC motor combined with a feedback control system. The control system typically includes a position or velocity feedback sensor, such as an encoder or a resolver. DC servo motors offer good speed and torque control and are often employed in robotics, automation, and hobbyist projects. They can be operated with a separate motor driver or integrated into servo motor units with built-in control electronics.

2. AC Servo Motors:

AC servo motors are designed for high-performance applications that require precise control and fast response times. They are typically three-phase motors and are driven by sinusoidal AC waveforms. AC servo motors often incorporate advanced control algorithms and feedback systems to achieve accurate position, velocity, and torque control. These motors are commonly used in industrial automation, CNC machines, robotics, and other applications that demand high precision and dynamic performance.

3. Brushed Servo Motors:

Brushed servo motors feature a traditional brushed DC motor design. They consist of a rotor with a commutator and carbon brushes that make physical contact with the commutator. The brushes provide electrical connections, allowing the motor’s magnetic field to interact with the rotor’s windings. Brushed servo motors are known for their simplicity and cost-effectiveness. However, they may require more maintenance due to brush wear, and they generally have lower efficiency and shorter lifespan compared to brushless servo motors.

4. Brushless Servo Motors:

Brushless servo motors, also known as brushless DC (BLDC) motors, offer several advantages over brushed motors. They eliminate the need for brushes and commutators, resulting in improved reliability, higher efficiency, and longer lifespan. Brushless servo motors rely on electronic commutation, typically using Hall effect sensors or encoder feedback for accurate rotor position detection. These motors are widely used in robotics, industrial automation, aerospace, and other applications that require high-performance motion control with minimal maintenance.

5. Linear Servo Motors:

Linear servo motors are designed to provide linear motion instead of rotational motion. They consist of a primary part (stator) and a secondary part (slider or forcer) that interact magnetically to generate linear motion. Linear servo motors offer advantages such as high speed, high acceleration, and precise positioning along a linear axis. They find applications in various industries, including semiconductor manufacturing, packaging, printing, and machine tools.

6. Micro Servo Motors:

Micro servo motors are small-sized servo motors often used in applications with limited space and low power requirements. They are commonly found in hobbyist projects, model airplanes, remote-controlled vehicles, and small robotic systems. Micro servo motors are lightweight, compact, and offer reasonable precision and control for their size.

These are some of the different types of servo motors available, each catering to specific applications and requirements. The choice of servo motor type depends on factors such as the desired performance, accuracy, power requirements, environmental conditions, and cost considerations. Understanding the differences between servo motor types is essential for selecting the most suitable motor for a particular application.

servo motor

Can you explain the difference between a servo motor and a regular electric motor?

A servo motor and a regular electric motor are both types of electric motors, but they have distinct differences in terms of design, control, and functionality.

A regular electric motor, also known as an induction motor or a DC motor, is designed to convert electrical energy into mechanical energy. It consists of a rotor, which rotates, and a stator, which surrounds the rotor and generates a rotating magnetic field. The rotor is connected to an output shaft, and when current flows through the motor’s windings, it creates a magnetic field that interacts with the stator’s magnetic field, resulting in rotational motion.

On the other hand, a servo motor is a more specialized type of electric motor that incorporates additional components for precise control of position, speed, and acceleration. It consists of a regular electric motor, a sensor or encoder, and a feedback control system. The sensor or encoder provides feedback on the motor’s current position, and this information is used by the control system to adjust the motor’s behavior.

The key difference between a servo motor and a regular electric motor lies in their control mechanisms. A regular electric motor typically operates at a fixed speed based on the voltage and frequency of the power supply. In contrast, a servo motor can be controlled to rotate to a specific angle or position and maintain that position accurately. The control system continuously monitors the motor’s actual position through the feedback sensor and adjusts the motor’s operation to achieve the desired position or follow a specific trajectory.

Another distinction is the torque output of the motors. Regular electric motors generally provide high torque at low speeds and lower torque at higher speeds. In contrast, servo motors are designed to deliver high torque at both low and high speeds, which makes them suitable for applications that require precise and dynamic motion control.

Furthermore, servo motors often have a more compact and lightweight design compared to regular electric motors. They are commonly used in applications where precise positioning, speed control, and responsiveness are critical, such as robotics, CNC machines, automation systems, and remote-controlled vehicles.

In summary, while both servo motors and regular electric motors are used to convert electrical energy into mechanical energy, servo motors offer enhanced control capabilities, precise positioning, and high torque at various speeds, making them well-suited for applications that require accurate and dynamic motion control.

China Hot selling Full Series NEMA 11 14 17 23 24 34 42 Outboard Boat Servo DC Electric Hybrid Stepper Motor/Step/Stepping Motor with Reducer, Encoder and Other Devices   manufacturer China Hot selling Full Series NEMA 11 14 17 23 24 34 42 Outboard Boat Servo DC Electric Hybrid Stepper Motor/Step/Stepping Motor with Reducer, Encoder and Other Devices   manufacturer
editor by CX 2023-11-16