China Custom DC800kg Widely Used in Factories Roller Shutter Door Motor Rolling Shutter Side Motor Roller Shutter Opener Shutter Gear Motor Electric Garage Door Motor with Great quality

Product Description

 

Technical Parameter

Technical Parameter

Model No. Max lifting weight(kg) Max lifting height(m) Rated Input Power(W) Output Torque(N.m) Big reel sprocket Rotation(r/min) Chain No.
 220V/230V      50HZ/60HZ
AC300KG-1P 300 6.5 450 168 6.2 10A
AC500KG-1P 500 6.5 450 343 6.2 10A
AC600KG-1P 600 6.5 680 412 6.2 10A
AC800KG-1P 800 7 700 607 4.2 10A
AC1000KG-1P 1000 7 700 1102 3.5 12A
380V/415V      50HZ/60HZ
AC1000KG-3P 1000 8 400 1102 6.5 12A
AC1300KG-3P 1300 8 600 1372 6.5 12A
AC1500KG-3P 1500 8 600 1610 5.7 12A
AC2000KG-3P 2000 8 800 2200 5.7 12A
DC Motors
300KG-DC24V 300 6.5 200 168 4.7 10A
500KG-DC24V 500 6.5 250 343 4.7 10A
600KG-DC24V 600 6.5 280 412 4.7 10A
800KG-DC24V 800 6.5 550 607 4.2 10A

 

Certificates

Certificates
 

Details

 

1) 4 relays to make motors work more stable and big lifting power. 

2) 100% copper wiring makes Motors with larger capacity, stable current and durable character.

3) 4 Micro switches in limit utensil for correct control, easy operation and big control range.

4) An anti-dropping device in bracket board to prevent accidental injury and ensure safety.

5) Motors can be customized based on your requirements.

Product Description

Product Description

Application Area:

Our motors are applied to shopping centers, warehouse, garages, theaters, hotels, banks, factories and other buildings’ rolling shutter doors’ opening and closing with electric and manual function.  

Working Environment & Conditions
1) Working Area: Indoor or similar places
2) Environment Temperature:-20ºC~50ºC
3) Relative Humid it: ≤90%
4) Voltage of Power: Fixed voltage× (1 ±10%)V
5) Frequency of Power:50Hz±2Hz
6) No strong electromagnetic interference source, explosive medium, corroding metal medium around.
7) Short working hour system, continuous operation should not over 6 minutes.

Feature
1) Shell: Aluminium alloy , solid and light but durable and easy to install.
2) Low noise: low energy consumption, small vibration.
3) Limit System: Correct control , easy operation and big control range.
4) Anti-dropping device: Preventing accidental injury and ensure safety.
5) TransmittersIt outfits with remote control.
 

Packaging & Delivery

Packing & Delivery

Packing: One set in 2 cartons, plastic bag inside, carton outside.
( The outside cartons can be customized according to customers’ requirements, like printing logo or words on it or according to your own design to print it.)

Loading CapacityA 20 GP container can hold about 520-550 PCS AC motor, if DC motors, 480-520PCS is available.

Delivery time: We will delivery the goods in 10-45 days after we receiving your deposit, which according to your exact quantity and requirements~
 

Company Information

Company Information

HangZhou JinAn Electric&Machine Co., Ltd.  is a manufacturer who has been specializing in developing and producing all  kinds of  rolling door motors  since 1991.  Through the  introduction of  advanced  production technology and equipment and a strong quality oriented workforce, we have gained CE and ISO9001 quality certification.  With strict quality control under  100% full inspection to ensure all products in good quality on
you hand. Meanwhile, we have professional engineer team to offer technical support for our customers. With 
the features of elegant design, stable quality, strong power, quiet running, easy installation and long service
life, our motors are popular with friends from Middle East, Asia, South America, etc.
We consistently insist our company motto “Pursuing quality,  permanent and continuous service” to satisfy our customers from different countries.  With  the positive attitude of keeping-improving and the spirit of striving, exploring and being responsible, we sincerely hope to open long-term, mutual reliance businesses with friends from all over the world!

Our Equipment

 

Exhibition

Exhibition

 

More Choice For You

More Choice For You

We have AC Motor 300kg, 500kg, 600kg, 800kg, 1000kg, 1300kg, 1500kg, 2000kg and DC Motor 300kg, 500kg, 600kg for your option.
 

FAQ

FAQ

Are you a manufacturer?
-Yes,we are a professional manufacturer of rolling door motor in HangZhou,we have our own factory.

How about the delivery time?
-Normally, if the goods are in stock it is 7-10 days; and it will be 15-35 days based on customer’s quantity & request, if the goods are not in stock.

Can you do OEM for me?
-Yes,OEM is acceptable,please contact us with your requirements,we will provide you a reasonable price and samples as soon as possible.

What’s the material of your Motor Winding?
-The main material is 100% Copper Wire, and Aluminum Wire is also for option for AC motors.

May I know the minimum Order Quantity ?
– Any quantity is welcome. Sample order for testing quality is available.

what’s your terms of payment?
-We accept Company Bank transfer. For samples, it should be 100% T/T in advance. For orders,  30% T/T in advance, and 70% balance before delivery.

How about your quality?
-We have professional engineers for technical supports, stable materials suppliers and strict quality control. Our workers with rich experience, all motors must be testing 1 by 1 before packaging to ensure good quality. 

If you need more information, please feel free to leave your message or contact us directly.

 

Application: Universal
Operating Speed: Constant Speed
Function: Control, Driving
Casing Protection: Protection Type
Certification: ISO9001, CCC
Output Torque: 607
Samples:
US$ 180/Set
1 Set(Min.Order)

|

Customization:
Available

|

gear motor

How is the efficiency of a gear motor measured, and what factors can affect it?

The efficiency of a gear motor is a measure of how effectively it converts electrical input power into mechanical output power. It indicates the motor’s ability to minimize losses and maximize its energy conversion efficiency. The efficiency of a gear motor is typically measured using specific methods, and several factors can influence it. Here’s a detailed explanation:

Measuring Efficiency:

The efficiency of a gear motor is commonly measured by comparing the mechanical output power (Pout) to the electrical input power (Pin). The formula to calculate efficiency is:

Efficiency = (Pout / Pin) * 100%

The mechanical output power can be determined by measuring the torque (T) produced by the motor and the rotational speed (ω) at which it operates. The formula for mechanical power is:

Pout = T * ω

The electrical input power can be measured by monitoring the current (I) and voltage (V) supplied to the motor. The formula for electrical power is:

Pin = V * I

By substituting these values into the efficiency formula, the efficiency of the gear motor can be calculated as a percentage.

Factors Affecting Efficiency:

Several factors can influence the efficiency of a gear motor. Here are some notable factors:

  • Friction and Mechanical Losses: Friction between moving parts, such as gears and bearings, can result in mechanical losses and reduce the overall efficiency of the gear motor. Minimizing friction through proper lubrication, high-quality components, and efficient design can help improve efficiency.
  • Gearing Efficiency: The design and quality of the gears used in the gear motor can impact its efficiency. Gear trains can introduce mechanical losses due to gear meshing, misalignment, or backlash. Using well-designed gears with proper tooth profiles and minimizing gear train losses can improve efficiency.
  • Motor Type and Construction: Different types of motors (e.g., brushed DC, brushless DC, AC induction) have varying efficiency characteristics. Motor construction, such as the quality of magnetic materials, winding resistance, and rotor design, can also affect efficiency. Choosing motors with higher efficiency ratings can improve overall gear motor efficiency.
  • Electrical Losses: Electrical losses, such as resistive losses in motor windings or in the motor drive circuitry, can reduce efficiency. Minimizing resistance, optimizing motor drive electronics, and using efficient control algorithms can help mitigate electrical losses.
  • Load Conditions: The operating conditions and load characteristics placed on the gear motor can impact its efficiency. Heavy loads, high speeds, or frequent acceleration and deceleration can increase losses and reduce efficiency. Matching the gear motor’s specifications to the application requirements and optimizing load conditions can improve efficiency.
  • Temperature: Elevated temperatures can significantly affect the efficiency of a gear motor. Excessive heat can increase resistive losses, reduce lubrication effectiveness, and affect the magnetic properties of motor components. Proper cooling and thermal management techniques are essential to maintain optimal efficiency.

By considering these factors and implementing measures to minimize losses and optimize performance, the efficiency of a gear motor can be enhanced. Manufacturers often provide efficiency specifications for gear motors, allowing users to select motors that best meet their efficiency requirements for specific applications.

gear motor

Can you explain the role of backlash in gear motors and how it’s managed in design?

Backlash plays a significant role in gear motors and is an important consideration in their design and operation. Backlash refers to the slight clearance or play between the teeth of gears in a gear system. It affects the precision, accuracy, and responsiveness of the gear motor. Here’s an explanation of the role of backlash in gear motors and how it is managed in design:

1. Role of Backlash:

Backlash in gear motors can have both positive and negative effects:

  • Compensation for Misalignment: Backlash can help compensate for minor misalignments between gears, shafts, or the load. It allows a small amount of movement before engaging the next set of teeth, reducing the risk of damage due to misalignment. This can be particularly beneficial in applications where precise alignment is challenging or subject to variations.
  • Negative Impact on Accuracy and Responsiveness: Backlash can introduce a delay or “dead zone” in the motion transmission. When changing the direction of rotation or reversing the load, the gear teeth must first overcome the clearance or play before engaging in the opposite direction. This delay can reduce the overall accuracy, responsiveness, and repeatability of the gear motor, especially in applications that require precise positioning or rapid changes in direction or speed.

2. Managing Backlash in Design:

Designers employ various techniques to manage and minimize backlash in gear motors:

  • Tight Manufacturing Tolerances: Proper manufacturing techniques and tight tolerances can help minimize backlash. Precision machining and quality control during the production of gears and gear components ensure closer tolerances, reducing the amount of play between gear teeth.
  • Preload or Pre-tensioning: Applying a preload or pre-tensioning force to the gear system can help reduce backlash. This technique involves introducing an initial force or tension that eliminates the clearance between gear teeth. It ensures immediate contact and engagement of the gear teeth, minimizing the dead zone and improving the overall responsiveness and accuracy of the gear motor.
  • Anti-Backlash Gears: Anti-backlash gears are designed specifically to minimize or eliminate backlash. They typically feature modifications to the gear tooth profile, such as modified tooth shapes or special tooth arrangements, to reduce clearance. Anti-backlash gears can be used in gear motor designs to improve precision and minimize the effects of backlash.
  • Backlash Compensation: In some cases, backlash compensation techniques can be employed. These techniques involve monitoring the position or movement of the load and applying control algorithms to compensate for the backlash. By accounting for the clearance and adjusting the control signals accordingly, the effects of backlash can be mitigated, improving accuracy and responsiveness.

3. Application-Specific Considerations:

The management of backlash in gear motors should be tailored to the specific application requirements:

  • Positioning Accuracy: Applications that require precise positioning, such as robotics or CNC machines, may require tighter backlash control to ensure accurate and repeatable movements.
  • Dynamic Response: Applications that involve rapid changes in direction or speed, such as high-speed automation or servo control systems, may require reduced backlash to maintain responsiveness and minimize overshoot or lag.
  • Load Characteristics: The nature of the load and its impact on the gear system should be considered. Heavy loads or applications with significant inertial forces may require additional backlash management techniques to maintain stability and accuracy.

In summary, backlash in gear motors can affect precision, accuracy, and responsiveness. While it can compensate for misalignments, backlash may introduce delays and reduce the overall performance of the gear motor. Designers manage backlash through tight manufacturing tolerances, preload techniques, anti-backlash gears, and backlash compensation methods. The management of backlash depends on the specific application requirements, considering factors such as positioning accuracy, dynamic response, and load characteristics.

gear motor

What are the different types of gears used in gear motors, and how do they impact performance?

Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:

1. Spur Gears:

Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.

2. Helical Gears:

Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.

3. Bevel Gears:

Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.

4. Worm Gears:

Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.

5. Planetary Gears:

Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.

6. Rack and Pinion:

Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.

The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.

China Custom DC800kg Widely Used in Factories Roller Shutter Door Motor Rolling Shutter Side Motor Roller Shutter Opener Shutter Gear Motor Electric Garage Door Motor   with Great quality China Custom DC800kg Widely Used in Factories Roller Shutter Door Motor Rolling Shutter Side Motor Roller Shutter Opener Shutter Gear Motor Electric Garage Door Motor   with Great quality
editor by CX 2023-10-20