China best NEMA 42 0.75kw 1.5kw 2kw 220V Low Speed 1000rpm 19.1nm AC Servo Motor for Medical Instruments vacuum pump

Product Description

 

MODEL 110SE5571 110SE515571 110SE52571 110SE510571 110SE515571
Rated Power(kW) 0.75 1.5 2 1 1.5
Rated Voltage(V) 220 220 220 220 220
Rated Speed(rpm) 1000 1000 1000 2500 2500
MAX Speed(rpm) 1500 1500 1500 4000 3500
Rated Torque(N.m) 6.5 9.55 19.1 3.82 5.73
Maximum Torque(N.m) 19.5 28.65 57.3 11.46 17.19
Rated Current(A) 5.3 6.7 9.09 5.5 6.8
Rotor Inertia(×10-4kg.m2) 5.63 7.64 11.9 3.8 5.2
Rotor Inertia(×10-4kg.m2)(Brake) 1.18 8.2 11.4 4.1 5.5
Torque Constant(N.m/A) 0.69 0.94 0.99 0.69 0.84
Back EMF(V/krpm) 79.5 86.3 82.5 40.2 50.9
Resistance(Ω) 2.16 1.63 0.73 0.75 0.84
Inductance(mH) 20.46 11.9 8.66 5.4 6.6
Electrical Constant(ms) 9.47 7.7 11.8 7.2 7.9
Insulation Class F
IP Rating IP54/IP65(oil seal)

Servo motor performance advantages

SMG series AC permanent magnet synchronous servo motors have independent intellectual property rights. The use of high-performance rare earth permanent magnet materials has outstanding advantages such as low inertia, high power density, super overload capacity, extremely low torque ripple, and low noise. ·Suitable for harsh environments, high cost performance; · High-performance rare earth permanent magnet rotor, high torque and low inertia, good dynamic response; · Three-phase sine wave design, with excellent low-speed smoothing characteristics; · Class F insulation, internal temperature protector; · Photoelectric encoder (incremental or absolute, resolver is optional); · IP6 high protection level.

Company Profile

Certifications

Exhibition

Product packaging

FAQ

1. Do you have online contact info?
 

2. How can we know the product quality?
A2: We suggest you to order a sample. Also, you can send us email for detail photos for checking if you cannot get enough information in the product page.

3. Is this your final price? May i have the discount?
A3: Our price is the factory price, and if your quantity is larger, we will allow the discount for you.

4.Is there cheap shipping cost to import to our country?
A4: Yes, we have our regular shipping company, they have very good price.

5. Can we visit your factory?
A5: Yes welcome warmly. No. 295, Xihu (West Lake) Dis. Road, Xihu (West Lake) Dis. Town, Xihu (West Lake) Dis., HangZhou City, ZheJiang Province, China.

6.What is the Warranty for your products?
A6: All products product warranty for 1 year, free service for 11 years.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal
Speed: Low Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 4
Customization:
Available

|

servo motor

What maintenance practices are recommended for ensuring the longevity of servo motors?

Maintaining servo motors properly is crucial to ensure their longevity and reliable performance. Here are some recommended maintenance practices:

1. Regular Cleaning:

Regularly clean the servo motor to remove dust, debris, and other contaminants that can affect its performance. Use a soft brush or compressed air to clean the motor’s exterior and ventilation ports. Avoid using excessive force or liquid cleaners that could damage the motor.

2. Lubrication:

Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant for the motor. Lubricate the motor’s bearings, gears, and other moving parts as per the specified schedule. Proper lubrication reduces friction, minimizes wear, and helps maintain optimal performance.

3. Inspections:

Regularly inspect the servo motor for signs of wear, damage, or loose connections. Check for any unusual noises, vibrations, or overheating during operation, as these can indicate potential issues. If any abnormalities are detected, consult the manufacturer’s documentation or seek professional assistance for further evaluation and repair.

4. Electrical Connections:

Ensure that all electrical connections to the servo motor, such as power cables and signal wires, are secure and properly insulated. Loose or damaged connections can lead to electrical problems, voltage fluctuations, or signal interference, which can affect the motor’s performance and longevity.

5. Environmental Considerations:

Take into account the operating environment of the servo motor. Ensure that the motor is protected from excessive moisture, dust, extreme temperatures, and corrosive substances. If necessary, use appropriate enclosures or protective measures to safeguard the motor from adverse environmental conditions.

6. Software and Firmware Updates:

Stay updated with the latest software and firmware releases provided by the servo motor manufacturer. These updates often include bug fixes, performance enhancements, and new features that can improve the motor’s functionality and reliability. Follow the manufacturer’s instructions for safely updating the motor’s software or firmware.

7. Training and Documentation:

Ensure that personnel responsible for the maintenance of servo motors are properly trained and familiar with the manufacturer’s guidelines and documentation. This includes understanding recommended maintenance procedures, safety precautions, and troubleshooting techniques. Regular training and access to up-to-date documentation are essential for effective servo motor maintenance.

8. Professional Servicing:

If a servo motor requires complex repairs or servicing beyond regular maintenance, it is advisable to consult a qualified technician or contact the manufacturer’s service center. Attempting to repair or modify the motor without proper expertise can lead to further damage or safety hazards.

By following these maintenance practices, servo motors can operate optimally and have an extended lifespan. Regular cleaning, lubrication, inspections, secure electrical connections, environmental considerations, software updates, training, and professional servicing all contribute to ensuring the longevity and reliable performance of servo motors.

servo motor

What is the significance of closed-loop control in servo motor operation?

Closed-loop control plays a significant role in the operation of servo motors. It involves continuously monitoring and adjusting the motor’s behavior based on feedback from sensors. The significance of closed-loop control in servo motor operation can be understood through the following points:

1. Accuracy and Precision:

Closed-loop control allows servo motors to achieve high levels of accuracy and precision in positioning and motion control. The feedback sensors, such as encoders or resolvers, provide real-time information about the motor’s actual position. This feedback is compared with the desired position, and any deviations are used to adjust the motor’s behavior. By continuously correcting for errors, closed-loop control ensures that the motor accurately reaches and maintains the desired position, resulting in precise control over the motor’s movements.

2. Stability and Repeatability:

Closed-loop control enhances the stability and repeatability of servo motor operation. The feedback information enables the control system to make continuous adjustments to the motor’s inputs, such as voltage or current, in order to minimize position errors. This corrective action helps stabilize the motor’s behavior, reducing oscillations and overshoot. As a result, the motor’s movements become more consistent and repeatable, which is crucial in applications where the same motion needs to be replicated accurately multiple times.

3. Compensation for Disturbances:

One of the key advantages of closed-loop control is its ability to compensate for disturbances or variations that may occur during motor operation. External factors, such as friction, load changes, or variations in the operating environment, can affect the motor’s performance and position accuracy. By continuously monitoring the actual position, closed-loop control can detect and respond to these disturbances, making the necessary adjustments to maintain the desired position. This compensation capability ensures that the motor remains on track despite external influences, leading to more reliable and consistent operation.

4. Improved Response Time:

Closed-loop control significantly improves the response time of servo motors. The feedback sensors provide real-time information about the motor’s actual position, which allows the control system to quickly detect any deviations from the desired position. Based on this feedback, the control system can adjust the motor’s inputs promptly, allowing for rapid corrections and precise control over the motor’s movements. The fast response time of closed-loop control is crucial in applications where dynamic and agile motion control is required, such as robotics or high-speed automation processes.

5. Adaptability to Changing Conditions:

Servo motors with closed-loop control are adaptable to changing conditions. The feedback information allows the control system to dynamically adjust the motor’s behavior based on real-time changes in the operating environment or task requirements. For example, if the load on the motor changes, the control system can respond by adjusting the motor’s inputs to maintain the desired position and compensate for the new load conditions. This adaptability ensures that the motor can perform optimally under varying conditions, enhancing its versatility and applicability in different industrial settings.

In summary, closed-loop control is of significant importance in servo motor operation. It enables servo motors to achieve high levels of accuracy, stability, and repeatability in position and motion control. By continuously monitoring the motor’s actual position and making adjustments based on feedback, closed-loop control compensates for disturbances, enhances response time, and adapts to changing conditions. These capabilities make closed-loop control essential for achieving precise and reliable operation of servo motors in various industrial applications.

servo motor

Can servo motors be used in robotics, and if so, how are they implemented?

Yes, servo motors are commonly used in robotics due to their precise control capabilities and suitability for a wide range of robotic applications. When implementing servo motors in robotics, several factors need to be considered. Here’s an overview of how servo motors are used and implemented in robotics:

1. Joint Actuation:

Servo motors are often used to actuate the joints of robotic systems. Each joint in a robot typically requires a motor to control its movement. Servo motors provide the necessary torque and angular control to accurately position the joint. They can rotate between specific angles, allowing the robot to achieve the desired configuration and perform precise movements.

2. Position Control:

Servo motors excel at position control, which is essential for robotics applications. They can accurately maintain a specific position and respond quickly to control signals. By incorporating servo motors in robotic joints, precise positioning control can be achieved, enabling the robot to perform tasks with accuracy and repeatability.

3. Closed-Loop Control:

Implementing servo motors in robotics involves utilizing closed-loop control systems. Feedback sensors, such as encoders or resolvers, are attached to the servo motors to provide real-time feedback on the motor’s position. This feedback is used to continuously adjust the motor’s behavior and ensure accurate positioning. Closed-loop control allows the robot to compensate for any errors or disturbances and maintain precise control over its movements.

4. Control Architecture:

In robotics, servo motors are typically controlled using a combination of hardware and software. The control architecture encompasses the control algorithms, microcontrollers or embedded systems, and communication interfaces. The control system receives input signals, such as desired joint positions or trajectories, and generates control signals to drive the servo motors. The control algorithms, such as PID control, are used to calculate the appropriate adjustments based on the feedback information from the sensors.

5. Kinematics and Dynamics:

When implementing servo motors in robotics, the kinematics and dynamics of the robot must be considered. The kinematics deals with the study of the robot’s motion and position, while the dynamics focuses on the forces and torques involved in the robot’s movement. Servo motors need to be properly sized and selected based on the robot’s kinematic and dynamic requirements to ensure optimal performance and stability.

6. Integration and Programming:

Servo motors in robotics need to be integrated into the overall robot system. This involves mechanical mounting and coupling the motors to the robot’s joints, connecting the feedback sensors, and integrating the control system. Additionally, programming or configuring the control software is necessary to define the desired movements and control parameters for the servo motors. This programming can be done using robot-specific programming languages or software frameworks.

By utilizing servo motors in robotics and implementing them effectively, robots can achieve precise and controlled movements. Servo motors enable accurate positioning, fast response times, and closed-loop control, resulting in robots that can perform tasks with high accuracy, repeatability, and versatility. Whether it’s a humanoid robot, industrial manipulator, or collaborative robot (cobot), servo motors play a vital role in their actuation and control.

China best NEMA 42 0.75kw 1.5kw 2kw 220V Low Speed 1000rpm 19.1nm AC Servo Motor for Medical Instruments   vacuum pump	China best NEMA 42 0.75kw 1.5kw 2kw 220V Low Speed 1000rpm 19.1nm AC Servo Motor for Medical Instruments   vacuum pump
editor by CX 2024-02-09