China best AC Servo Motor 220V 130st-M06025 1.5kw 6nm 2500rpm vacuum pump connector

Product Description

Structure and working principle of servo motor:

Servo motor is 1 of the commonly used motor,it is a motor that absolutely obeys the command of the control signal.Before the control signal is sent, the rotor is stationary;when the control signal is sent,the rotor rotates immediately;when the control signal disappears, the rotor can stop immediately.

 

As a special type of motor,synchronous servo motor is different from most other motors,it is designed for precise positioning,rather than speed controlling.

80ST,220V(1PHASE,3PHASE)

110ST,220V(1PHASE,3PHASE)

130ST,220V(1PHASE,3PHASE)


180ST,220V,380V


AC SERVO DRIVER,SG200

Since the development of AC servo technology in the early 1980s,the technology has become increasingly mature and the performance has been continuously improved.Now it has been widely used in CNC machine tools, printing and packaging machinery,textile machinery,automatic production lines and other fields.

 

SG Series AC servo is a new generation of AC servo driver independently developed by our company. It mainly uses the latest 32-bit DSP as the core remote computing unit, and adopts complex programmable device EPLD and CHINAMFG intelligent power module.It has a series advantages such as high integration,small size,fast response,perfect protection, and high reliability.

 

Using temperature:-10ºC-55ºC

Humidity:less than 90%(No condensation)

Vibration:less than 0.5g(4.9m/s2)

Working duty:continuously

 

Technical parameter:

Model SG200 Series
Input power supply Single phase or 3 phase,AC220v(-15%-20%,50/60Hz) Three phase, AC220v(-15%-20%,50/60Hz)
Use environment Temperature Using:0°C-55°C;Storage:-20°C-80°C
  Humidity Below 90%(no condensation)
Control mode Position control;Speed control;Torque control;Jog control
Regenerative braking Built-in
Control characteristics Speed frequency response <400Hz
  Speed fluctuation rate <±0.03(load 0-100);<±0.02(power -15%-10%),the value corresponds to the rated speed
  Pulse frequency ≤500kHz
Control Input servo enable; alarm clear; ccw drive prohibited; cw drive prohibited; Deviation counter clearing/speed selection 1/zero speed clamping; Command pulse prohibited/speed selection 2
Control output servo is ready to output; servo alarm output; position finish output/speed arrive output ;mechanical brake output
Position Control Input method pulse+symbol; ccw pulse/cw pulse; 2phase A/B quadrature pulses
  Electronic gear 1-32767/1-32767
  Feedback pulse 2500lines/rotation
Protection function Overspeed, overvoltage and undervoltage of main power supply, overcurrent, overload, braking abnormality, encoder abnormality, control power abnormality, position out-of-tolerance, etc
Monitoring function Speed, current position, command pulse accumulation, position deviation, motor torque, motor current, linear speed, rotor absolute position, command pulse frequency, operation status, input and output terminal signal, etc

 

AC SERVO DRIVER,M SERIES

Model M Series
Input power supply Single phase or 3 phase 220VAC Three phase 220VAC
Control mode Single phase or 3 phase full wave rectification/PWM control sine wave drive mode
Encoder feedback 2500 lines incremental encoder,17bit,23bit absolute encoder
Pulse signal input Direction+pulse;A/B phase orthogonal pulse;CW/CCW pulse
  Differential input:500Kpps
  Open collector input:200Kpps
Digital input 8-channel digital input,which can allocate and change signals
Analog input 2-channel analog input function
Communication interface RS-232:applicable servo driver debugging;RS-485:applicable for customer on-site networking communication
Control mode Position control;speed control;torque control;position/speed control;speed/torque control;position/torque control
Basic performance Response band width:3KHz
  Speed adjust range:1-8000rpm
  Troque control accuraccy:±2%
  Speed variation rate:≤0.5%
  Soft start time setting:0-60S
Built-in function Motor load inertia identification function,vibration suppression function,feedforward compensation function,various PID control strategies
  Overtravel prevention function,emergency parking brake in case of overtravel
  Electronic gear ratio function:electronic gear ratio can be set arbitrarily
  16 stage position control function,16 stage speed control function,interrupted fixed length function
Protection function Over voltage, over current, overload,overspeed,under voltage,overheating,encoder failure,power phase loss,abnormal regenerative braking,fan failure,etc
Use environment Temperature Using:0°C-45°C;Storage:-20°C-85°C
  Humidity Below 90%(no condensation)
  Protection IP20
  Altitude Below 1000m
  Vibration Below 4.9m/s2

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Operation Mode: Electric Motor
Magnetic Structure: Permanent Magnet
Function: Driving
Number of Poles: 4
Customization:
Available

|

servo motor

What role does the controller play in the overall performance of a servo motor?

The controller plays a crucial role in the overall performance of a servo motor system. It is responsible for monitoring and regulating the motor’s operation to achieve the desired motion and maintain system stability. Let’s explore in detail the role of the controller in the performance of a servo motor:

1. Motion Control:

The controller is responsible for generating precise control signals that dictate the motor’s speed, torque, and position. It receives input commands from the user or higher-level control system and translates them into appropriate control signals for the servo motor. By accurately controlling the motor’s motion, the controller enables precise positioning, smooth acceleration and deceleration, and the ability to follow complex trajectories. The controller’s effectiveness in generating accurate and responsive control signals directly impacts the motor’s motion control capabilities.

2. Feedback Control:

The controller utilizes feedback from position sensors, such as encoders, to monitor the motor’s actual position, speed, and other parameters. It compares the desired motion profile with the actual motor behavior and continuously adjusts the control signals to minimize any deviations or errors. This closed-loop feedback control mechanism allows the controller to compensate for disturbances, variations in load conditions, and other factors that may affect the motor’s performance. By continuously monitoring and adjusting the control signals based on feedback, the controller helps maintain accurate and stable motor operation.

3. PID Control:

Many servo motor controllers employ Proportional-Integral-Derivative (PID) control algorithms to regulate the motor’s behavior. PID control calculates control signals based on the error between the desired setpoint and the actual motor response. The proportional term responds to the present error, the integral term accounts for accumulated past errors, and the derivative term considers the rate of change of the error. By tuning the PID parameters, the controller can achieve optimal performance in terms of response time, stability, and steady-state accuracy. Properly configured and tuned PID control greatly influences the servo motor’s ability to follow commands accurately and efficiently.

4. Trajectory Planning:

In applications requiring complex motion profiles or trajectories, the controller plays a vital role in trajectory planning. It determines the optimal path and speed profile for the motor to follow, taking into account constraints such as acceleration limits, jerk limits, and mechanical limitations. The controller generates the required control signals to achieve the desired trajectory, ensuring smooth and precise motion. Effective trajectory planning by the controller enhances the motor’s performance in applications that involve intricate or high-speed movements.

5. System Monitoring and Protection:

The controller monitors various parameters of the servo motor system, including temperature, current, voltage, and other diagnostic information. It incorporates protective measures to prevent damage or excessive stress on the motor. The controller can implement safety features such as overcurrent protection, over-temperature protection, and fault detection mechanisms. By actively monitoring and safeguarding the motor and the system, the controller helps prevent failures, prolongs the motor’s lifespan, and ensures safe and reliable operation.

6. Communication and Integration:

The controller facilitates communication and integration with other components or systems within the overall automation setup. It may support various communication protocols, such as Ethernet, CAN bus, or fieldbus protocols, enabling seamless integration with higher-level control systems, human-machine interfaces (HMIs), or other peripheral devices. The controller’s ability to efficiently exchange data and commands with other system components allows for coordinated and synchronized operation, enhancing the overall performance and functionality of the servo motor system.

In summary, the controller plays a vital role in the overall performance of a servo motor system. It enables precise motion control, utilizes feedback for closed-loop control, implements PID control algorithms, plans complex trajectories, monitors system parameters, and facilitates communication and integration. The controller’s capabilities and effectiveness directly impact the motor’s performance in terms of accuracy, responsiveness, stability, and overall system efficiency.

servo motor

Are there different types of servo motors, and how do they differ?

Yes, there are different types of servo motors available, each with its own characteristics and applications. The variations among servo motors can be attributed to factors such as construction, control mechanisms, power requirements, and performance specifications. Let’s explore some of the common types of servo motors and how they differ:

1. DC Servo Motors:

DC servo motors are widely used in various applications. They consist of a DC motor combined with a feedback control system. The control system typically includes a position or velocity feedback sensor, such as an encoder or a resolver. DC servo motors offer good speed and torque control and are often employed in robotics, automation, and hobbyist projects. They can be operated with a separate motor driver or integrated into servo motor units with built-in control electronics.

2. AC Servo Motors:

AC servo motors are designed for high-performance applications that require precise control and fast response times. They are typically three-phase motors and are driven by sinusoidal AC waveforms. AC servo motors often incorporate advanced control algorithms and feedback systems to achieve accurate position, velocity, and torque control. These motors are commonly used in industrial automation, CNC machines, robotics, and other applications that demand high precision and dynamic performance.

3. Brushed Servo Motors:

Brushed servo motors feature a traditional brushed DC motor design. They consist of a rotor with a commutator and carbon brushes that make physical contact with the commutator. The brushes provide electrical connections, allowing the motor’s magnetic field to interact with the rotor’s windings. Brushed servo motors are known for their simplicity and cost-effectiveness. However, they may require more maintenance due to brush wear, and they generally have lower efficiency and shorter lifespan compared to brushless servo motors.

4. Brushless Servo Motors:

Brushless servo motors, also known as brushless DC (BLDC) motors, offer several advantages over brushed motors. They eliminate the need for brushes and commutators, resulting in improved reliability, higher efficiency, and longer lifespan. Brushless servo motors rely on electronic commutation, typically using Hall effect sensors or encoder feedback for accurate rotor position detection. These motors are widely used in robotics, industrial automation, aerospace, and other applications that require high-performance motion control with minimal maintenance.

5. Linear Servo Motors:

Linear servo motors are designed to provide linear motion instead of rotational motion. They consist of a primary part (stator) and a secondary part (slider or forcer) that interact magnetically to generate linear motion. Linear servo motors offer advantages such as high speed, high acceleration, and precise positioning along a linear axis. They find applications in various industries, including semiconductor manufacturing, packaging, printing, and machine tools.

6. Micro Servo Motors:

Micro servo motors are small-sized servo motors often used in applications with limited space and low power requirements. They are commonly found in hobbyist projects, model airplanes, remote-controlled vehicles, and small robotic systems. Micro servo motors are lightweight, compact, and offer reasonable precision and control for their size.

These are some of the different types of servo motors available, each catering to specific applications and requirements. The choice of servo motor type depends on factors such as the desired performance, accuracy, power requirements, environmental conditions, and cost considerations. Understanding the differences between servo motor types is essential for selecting the most suitable motor for a particular application.

servo motor

What is a servo motor, and how does it function in automation systems?

A servo motor is a type of motor specifically designed for precise control of angular or linear position, velocity, and acceleration. It is widely used in various automation systems where accurate motion control is required. Let’s explore the concept of servo motors and how they function in automation systems:

A servo motor consists of a motor, a position feedback device (such as an encoder or resolver), and a control system. The control system receives input signals, typically in the form of electrical pulses or analog signals, indicating the desired position or speed. Based on these signals and the feedback from the position sensor, the control system adjusts the motor’s operation to achieve the desired motion.

The functioning of a servo motor in an automation system involves the following steps:

  1. Signal Input: The automation system provides a control signal to the servo motor, indicating the desired position, speed, or other motion parameters. This signal can be generated by a human operator, a computer, a programmable logic controller (PLC), or other control devices.
  2. Feedback System: The servo motor incorporates a position feedback device, such as an encoder or resolver, which continuously monitors the motor’s actual position. This feedback information is sent back to the control system, allowing it to compare the actual position with the desired position specified by the input signal.
  3. Control System: The control system, typically housed within the servo motor or an external servo drive, receives the input signal and the feedback from the position sensor. It processes this information and generates the appropriate control signals to the motor.
  4. Motor Operation: Based on the control signals received from the control system, the servo motor adjusts its operation to achieve the desired motion. The control system varies the motor’s voltage, current, or frequency to control the motor’s speed, torque, or position accurately.
  5. Closed-Loop Control: Servo motors operate in a closed-loop control system. The feedback information from the position sensor allows the control system to continuously monitor and adjust the motor’s operation to minimize any deviation between the desired position and the actual position. This closed-loop control mechanism provides high accuracy, repeatability, and responsiveness in motion control applications.

One of the key advantages of servo motors in automation systems is their ability to provide precise and dynamic motion control. They can rapidly accelerate, decelerate, and change direction with high accuracy, allowing for intricate and complex movements. Servo motors are widely used in applications such as robotics, CNC machines, printing presses, packaging equipment, and automated manufacturing systems.

In summary, a servo motor is a specialized motor that enables accurate control of position, velocity, and acceleration in automation systems. Through the combination of a control system and a position feedback device, servo motors can precisely adjust their operation to achieve the desired motion. Their closed-loop control mechanism and high responsiveness make them an essential component in various applications requiring precise and dynamic motion control.

China best AC Servo Motor 220V 130st-M06025 1.5kw 6nm 2500rpm   vacuum pump connector	China best AC Servo Motor 220V 130st-M06025 1.5kw 6nm 2500rpm   vacuum pump connector
editor by CX 2024-02-05